• Title/Summary/Keyword: flat top

Search Result 240, Processing Time 0.033 seconds

Effect of parapets to pressure distribution on flat top of a finite cylinder

  • Ozmen, Y.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.465-477
    • /
    • 2013
  • In this paper, the effects of parapets on the mean and fluctuating wind pressures which are acting on a flat top of a finite cylinder vertically placed on a flat plate have experimentally been investigated. The aspect ratio (AR) of cylinder is 1 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 150000. The pressure distributions on the flat top and the side wall of the finite cylinder immersed in a simulated atmospheric boundary layer have been obtained for different parapet heights. The large magnitudes of mean and minimum suction pressures occurring near the leading edge were measured for the cases with and without parapet. They shift to the further downstream on the circular top with increasing parapet height. It is seen that the parapets reduce the local high suction on the top up to 24%.

A study of fabrication of LIPSS using flat-top beam with various materials (다양한 재질에서의 flat-top 빔을 이용한 LIPSS 형성에 관한 연구)

  • Choi, Jun-Ha;Choi, Won-Suk;Shin, Young-Gwan;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.26-31
    • /
    • 2021
  • In this study, laser-induced periodic surface structure (LIPSS) was fabricated on Ni, Si, and GaAs samples using a flat-top beam with a uniform energy distribution that was fabricated using a Gaussian femtosecond laser with a mechanical slit and tube lens. Unlike the Gaussian beam, the flat-top beam has a uniform beam profile, therefore the center and the periphery of the fabricated LIPSS have similar line periodicity. In addition, LIPSS was obtained not only in metals but also in metalloids and metals and metalloid compounds by using the narrow pulse width characteristic of a femtosecond laser.

Design of Tunable Flat-top Bandpass Filter Based on Two Long-period Fiber Gratings and Core Mode Blocker

  • Bae, Jin-Ho;Bae, Jun-Kye;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.202-206
    • /
    • 2011
  • We propose a tunable flat-top bandpass filter to pass light in a customized wavelength band by using long-period fiber gratings (LPFG) structure. The LPFG structure is composed of a core mode blocker in between two LPFGs. The bandpass spectrum of the proposed structure is obtained in overlapped wavelength band of two LPFGs operating on the same modes. To analyze the properties, we introduce a mathematical matrix model for the structure. We theoretically demonstrate flexibility of the flat-top bandpass filter with various bandwidths.

Lyot-Type High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Structure (편광 상이 루프 구조 기반 Lyot형 고차 광섬유 빗살 필터)

  • Jo, Song-Hyun;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.10-15
    • /
    • 2013
  • In this paper, we propose a Lyot-type optical fiber comb filter based on a polarization-diversity loop structure (PDLS), which has flat-top pass bands and multiwavelength switching capability. Generally, the PDLS can remove the dependency of the filter on input polarization. The proposed filter is composed of a polarization beam splitter, two half-wave plates (HWPs), and two polarization-maintaining fiber loops concatenated with a $60^{\circ}$ offset between their principal axes. By controlling two HWPs, it can operate in a flat-top band mode or a lossy flat-top band mode with an inherent insertion loss of ~3.49dB. In particular, flat-top bands can be interleaved in both modes, which cannot be realized in a Lyot-Sagnac comb filter based on a fiber coupler. Compared with Solc-type high-order comb filters with the same order, the proposed filter shows sharper transition between pass and stop bands.

Numerical Analysis of the Formation of New Impinging Spray in the Combustion System (디젤연소실에서 새로운 충돌분무 형성에 대한 수치적 고찰)

  • Ryoo, Sung-Mok;Cha, Keun-Jong;Kim, Duck-Jool;Park, Kweonha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1625-1634
    • /
    • 1998
  • The objective of this study is to establish geometric guidelines for design of impaction parts prepared for removing undesirable effects of fuel deposition on a wall in small direct-injection diesel engines. In order to get the guidelines a new wall geometry is introduced and assessed, which has a flat top and a slant edge. The size of the flat top and the angle of the slant edge are varied and tested in same chamber condition, then their effects on spray dispersions and drop sizes are discussed. The results show that the case of 3.0mm flat top and $60^{\circ}$ edge angle gives the best spray characteristics for a small combustion chamber in the test conditions chosen in this paper.

Natural Frequency Maximization Using a Flat-top Emboss (윗면이 평평한 엠보스 형상을 이용한 고유 진동수 극대화)

  • 송경호;박윤식;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.72-76
    • /
    • 2003
  • Even though embossing is an effective SDM(Structural Dynamics Modification) technique, it is difficult to implement the method in fields owing to its geometric complexity. In this research low flat-top emboss shape, rather than general shape, is considered and a systematic procedure is derived in describing the emboss implementation procedure utilizing the fact that the emboss shape can be fully expressed only if the boundary elements are appropriately given. Best position to maximize natural frequencies is found using the procedure and usefulness of the suggested technique is illustrated.

  • PDF

Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter (태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.;Kim, J.R.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.15-24
    • /
    • 1998
  • There are mainly 3 heat losses from solar collector; top, bottom, and edge heat loss. Usually edge heat loss is small so that could be neglected. Of the total thermal losses occurring in a flat plate solar collector, top loss heat losses are dominant. Therefore it is necessary to calculate the top loss coefficient accurately in order to find out performance of solar collector. The flat plate solar collector(regenerator in summer) used in this study was made for year-round all conditioning. In order to find out collector efficiency for heating in winter without a system change, outdoor experiment was done. The top loss coefficient of this collector was about 3 to $4.5W/m^2^{\circ}C$. Futhermore use of selective coating in trickling surface can improve a performance of flat plate solar collector.

  • PDF

A study of Illumination on Floor Surface by Flat Form Louver of Top Lighting System (천창루버에 의한 내부공간 바닥면 조도변화와 설치방식에 관한 연구)

  • Kim, Mi-Hee;Tae, Won-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.132-138
    • /
    • 2011
  • Inducing the natural lighting into building has been commonly applied to the spaces where artistic objects are displayed to create better visual environment for the appreciation. The direct natural lighting, especially through top lighting system may, however, bring forth discoloing of highly light-sensitive materials such as paintings or demanding additional cooling load. In addition, it causes to create glare against appreciators or to yield in visual distraction due to the extreme contrast on the inner surfaces of the spaces. Shading device such as louver is capable of preventing such voidable cases with careful manipulation. This study aims to provide basic design guide-line when the flat-form louver has to be applied to top lighting system. Interaction between the daylight and louver was simulated by Reluxpro program with variation of the attachment location, the angle of the lover, surface reflectivity, to obtain the illumination of the floor surface. This study yields the louver just under the top lighting window with 90 degree angle gives the most desirable way of employment when the uniform illumination on the floor surface is required.

Wide-fan-angle Flat-top Linear Laser Beam Generated by Long-pitch Diffraction Gratings

  • Lee, Mu Hyeon;Ryu, Taesu;Kim, Young-Hoon;Yang, Jin-Kyu
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.500-505
    • /
    • 2021
  • We demonstrated a wide-fan-angle flat-top irradiance pattern with a very narrow linewidth by using an aspheric lens and a long-pitch reflective diffraction grating. First, we numerically designed a diffraction-based linear beam homogenizer. The structure of the Al diffraction grating with an isosceles triangular shape was optimized with 0.1-mm pitch, 35.5° slope angle, and 0.02-mm radius of the rounding top. According to the numerical results, the linear uniformity of the irradiance was more sensitive to the working distance than to the shape of the Al grating. The designed Al grating reflector was fabricated by using a conventional mold injection and an Al coating process. A uniform linear irradiance of 405-nm laser diode with a 100-mm flat-top length and 0.176-mm linewidth was experimentally demonstrated at 140-mm working distance. We believe that our proposed linear beam homogenizer can be used in various potential applications at a precise inspection system such as three-dimensional morphology scanner with line lasers.

Reduced ion mass effects and parametric study of electron flat-top distribution formation

  • Hong, Jinhy;Lee, Ensang;Parks, George K.;Min, Kyoungwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.118.2-118.2
    • /
    • 2012
  • In particle-in-cell (PIC) simulation studies related to ion-ion two-stream instability, a reduced ion-to-electron mass ratio is often employed to save computation time. But it was not clearly verified how electrons dynamics are coupled with the slower evolution of ion-ion interactions under the external electric field. We have studied the ion beam driven instability using a 1D electrostatic PIC code by comparing different rescaling of parameter with real ion mass from the reference simulation with reduced ion mass. As the external electric field is stronger, the excited unstable mode range was more sensitively affected by the system size with the real mass ratio than the reduced ion mass. The results show that the reduced mass ratio should be used cautiously in PIC code as the electron dynamics can modify the ion instabilities. Additionally we found the formation of electron flat-top distribution in the final saturation stage. Simulation results show that in the early phase electrostatic solitary waves are quasi-periodically formed, but later they are fully dissipated resulting in heated, flat-top distributions. New electron beam components are occasionally formed. These are a consequence of the interaction with solitary wave structures. We parametrically investigate the development of electron phase space distributions for various drift speeds of ion beams and temperature ratios between ions and electrons

  • PDF