Browse > Article

A study of fabrication of LIPSS using flat-top beam with various materials  

Choi, Jun-Ha (Department of Nano-Mechatronics, Korea University of Science and Technology)
Choi, Won-Suk (Department of Nano-manufacturing Technology, Korea Institute of Machinery and Material)
Shin, Young-Gwan (Department of Nano-Mechatronics, Korea University of Science and Technology)
Cho, Sung-Hak (Department of Nano-Mechatronics, Korea University of Science and Technology)
Choi, Doo-Sun (Department of Nano-manufacturing Technology, Korea Institute of Machinery and Material)
Publication Information
Design & Manufacturing / v.15, no.3, 2021 , pp. 26-31 More about this Journal
Abstract
In this study, laser-induced periodic surface structure (LIPSS) was fabricated on Ni, Si, and GaAs samples using a flat-top beam with a uniform energy distribution that was fabricated using a Gaussian femtosecond laser with a mechanical slit and tube lens. Unlike the Gaussian beam, the flat-top beam has a uniform beam profile, therefore the center and the periphery of the fabricated LIPSS have similar line periodicity. In addition, LIPSS was obtained not only in metals but also in metalloids and metals and metalloid compounds by using the narrow pulse width characteristic of a femtosecond laser.
Keywords
Femtosecond laser; Flat-top beam; LIPSS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Valsecchi, A.G. Brolo, "Periodic metallic nanostructures as plasmonic chemical sensors", Langmuir. 29, pp. 5638-5649, 2013.   DOI
2 J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, J. Kruger, "Laser-Induced Periodic Surface Structures-A Scientific Evergreen", IEEE J. Sel. Top. Quantum Electron. 23, pp. 109-123, 2017. https://doi.org/10.1109/JSTQE.2016.2614183.   DOI
3 J. Bonse, A. Rosenfeld, J. Kruger, "On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses", J. Appl. Phys. 106, 2009.   DOI
4 J. Bonse, J. Kruger, S. Hohm, A. Rosenfeld, "Femtosecond laser-induced periodic surface structures", J. Laser Appl. 24, 042006, 2012.   DOI
5 J. Bonse, H. Sturm, D. Schmidt, W. Kautek, "Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air", Appl. Phys. A Mater. Sci. Process. 71, pp. 657-665, 2000 .   DOI
6 K.L. Lee, P.K. Wei, "Optimization of periodic gold nanostructures for intensity-sensitive detection", Appl. Phys. Lett. 99, 2011.
7 J. Bonse, S. Baudach, J. Kruger, W. Kautek, M. Lenzner, "Femtosecond laser ablation of silicon-modification thresholds and morphology", Appl. Phys. A Mater. Sci. Process. 74, pp. 19-25, 2002.   DOI
8 J. Wang, C. Guo, "Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals", Appl. Phys. Lett. 87, pp. 1-3, 2005.
9 J. Bonse, S. V. Kirner, S. Hohm, N. Epperlein, D. Spaltmann, A. Rosenfeld, J. Kruger, "Applications of laser-induced periodic surface structures (LIPSS)", Laser-Based Micro- Nanoprocessing XI. 10092, 100920N, 2017.
10 A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, S. Hava, "Metal grating on a substrate nanostructure for sensor applications", Photonics Nanostructures - Fundam. Appl. 7, pp. 170-175, 2009.   DOI
11 A. Pimpin, W. Srituravanich, "Reviews on microand nanolithography techniques and their applications", Eng. J. 16, pp. 37-55, 2012.
12 J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, "Laser-induced periodic surface structure. I. Theory", Phys. Rev. B. 27, pp. 1141-1154, 1983.   DOI
13 M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, "Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser", ACS Nano. 3, pp. 4062-4070, 2009.   DOI
14 R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, S. Juodkazis, "Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback", Nanotechnology, 22, 2011.
15 Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., & Tunnermann, "A Femtosecond, picosecond and nanosecond laser ablation of solids", Applied phys A 1996; pp. 109-115, 1996.
16 Mirza I, Bulgakova NM, Tomastik J, Michalek V, Haderka O, Fekete L, et al. "Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms", role of breakdown. Sci Rep, pp. 1-11, 2016.6.
17 Nedialkov NN, Imamova SE, Atanasov PA. "Ablation of metals by ultrashort laser pulses", J Phys D Appl. Phys, pp. 638-43, 2004;37.   DOI
18 Ashkenasi D, Muller G, Rosenfeld A, Stoian R, Hertel I V., Bulgakova NM, et al. "Fundamentals and advantages of ultrafast micro-structuring of transparent materials", Appl. Phys A Mater Sci Process 2003;77:223-8, 2003.   DOI
19 Ams M, Little DJ, Withford MJ. "Femtosecond-laser-induced refractive index modifications for photonic device processing", Woodhead Publishing Limited, 2012.
20 Sugioka K, Cheng Y. "Femtosecond laser three-dimensional micro-and nanofabrication", Appl Phys Rev 2014;1.
21 S. Aksu, A.A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, "High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy", Nano Lett. 10 (2010) pp. 2511-2518, 2010. https://doi.org/10.1021/nl101042a.   DOI
22 M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials", J. Appl. Phys. 85, pp. 6803-6810, 1999.   DOI
23 H.W. Chang, Y.C. Tsai, C.W. Cheng, C.Y. Lin, Y.W. Lin, T.M. Wu, "Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering", J. Colloid Interface Sci. 360, pp. 305-308, 2011.   DOI
24 C. Byram, S.S.B. Moram, V.R. Soma, "Surface-enhanced Raman scattering studies of gold-coated ripple-like nanostructures on iron substrate achieved by femtosecond laser irradiation in water", J. Raman Spectrosc. 50, pp. 1103-1113, 2019.   DOI
25 A. Wang, L. Jiang, X. Li, Q. Xie, B. Li, Z. Wang, K. Du, Y. Lu, "Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection", J. Mater. Chem. B. 5, pp. 777-784, 2017.   DOI
26 M. Ams, D.J. Little, M.J. Withford, "Femtosecond-laser-induced refractive index modifications for photonic device processing", Woodhead Publishing Limited, 2012.
27 Z. Dai, C.S. Lee, B.Y. Kim, C.H. Kwak, J.W. Yoon, H.M. Jeong, J.H. Lee, "Honeycomb-like periodic porous LaFeO3 thin film chemiresistors with enhanced gas-sensing performances", ACS Appl. Mater. Interfaces. 6, pp. 16217-16226, 2014.   DOI
28 I. Gnilitskyi, T.J.Y. Derrien, Y. Levy, N.M. Bulgakova, T. Mocek, L. Orazi, "High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity", Sci. Rep. 7, pp. 1-11, 2017.   DOI
29 J.J.J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, "Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate", Sci. Rep. 5, pp. 1-12, 2015.
30 L. Parellada-Monreal, I. Castro-Hurtado, M. Martinez-Calderon, L. Presmanes, G.G. Mandayo, "Laser-induced periodic surface structures on ZnO thin film for high response NO 2 detection", Appl. Surf. Sci. 476, pp. 569-575, 2019.   DOI
31 R.P. Seisyan, Nanolithography in microelectronics: A review", Tech. Phys. 56, pp. 1061-1073, 2011.   DOI
32 Perry MD, Stuart BC, Banks PS, Feit MD, Yanovsky V, Rubenchik AM. "Ultrashort-pulse laser machining of dielectric materials", J Appl. Phys 1999;85:6803-10, 1999.   DOI