Browse > Article
http://dx.doi.org/10.12989/was.2013.17.5.465

Effect of parapets to pressure distribution on flat top of a finite cylinder  

Ozmen, Y. (Department of Mechanical Engineering, Karadeniz Technical University)
Publication Information
Wind and Structures / v.17, no.5, 2013 , pp. 465-477 More about this Journal
Abstract
In this paper, the effects of parapets on the mean and fluctuating wind pressures which are acting on a flat top of a finite cylinder vertically placed on a flat plate have experimentally been investigated. The aspect ratio (AR) of cylinder is 1 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 150000. The pressure distributions on the flat top and the side wall of the finite cylinder immersed in a simulated atmospheric boundary layer have been obtained for different parapet heights. The large magnitudes of mean and minimum suction pressures occurring near the leading edge were measured for the cases with and without parapet. They shift to the further downstream on the circular top with increasing parapet height. It is seen that the parapets reduce the local high suction on the top up to 24%.
Keywords
parapet; suction pressure; flat top; finite cylinder; wind tunnel;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Stathopoulos, T. and Baskaran, A. (1988), "Wind pressures on flat roofs with parapets", J. Struct. Eng. - ASCE, 113(11), 2166-2180.
2 Sumner, D., Heseltine, J.L. and Dansereau, O.J.P. (2004) "Wake structure of a finite circular cylinder of small aspect ratio", Exp. Fluids, 37(5), 720-730.   DOI
3 Sumner, D. and Heseltine, J.L. (2008), "Tip vortex structure for a circular cylinder with a free end", J. Wind Eng. Ind. Aerod., 96(6-7), 1185-1196.   DOI   ScienceOn
4 Sun, T.F., Gu, Z.F., He, D.X. and Zhang, L.L. (1992), "Fluctuating pressure on two circular cylinders at high Reynolds numbers", J. Wind Eng. Ind. Aerod., 41-44, 577-588.
5 Uematsu, Y., Yamada, M. and Ishii, K. (1990), "Some effects of free-stream turbulence on the flow past a cantilevered circular cylinder", J. Wind Eng. Ind. Aerod., 33(1-2), 43-52.   DOI   ScienceOn
6 Uematsu, Y. and Yamada, M. (1994), "Aerodnamic forces on circular cylinders of finite height", J. Wind Eng. Ind. Aerod., 51(2), 249-265.   DOI   ScienceOn
7 Uematsu, Y. and Yamada, M. (2002). "Wind-induced dynamic response and its load estimation for structural frames of circular flat roofs with long span", Wind Struct., 5(1), 49-60.   DOI   ScienceOn
8 Uematsu, Y., Watanabe, K., Sasaki, A., Yamada, M. and Hongo, T. (1999), "Wind-induced dynamic response and resultant load estimation of a circular flat roof", J. Wind Eng. Ind. Aerod., 83(1-3), 251-261.   DOI   ScienceOn
9 Uematsu, Y., Moteki, T. and Hongo, T. (2008), "Model of wind pressure field on circular flat roofs and its application to load estimation", J. Wind Eng. Ind. Aerod., 96(6-7), 1003-1014.   DOI   ScienceOn
10 West, G.S. and Apelt, C.J. (1982), "The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 10(4) and 10(5)", J. Fluid Mech., 114, 361-377.   DOI   ScienceOn
11 Farivar, D. (1981), "Turbulent uniform flow around cylinders of finite length", AIAA J., 19(3), 275-281.   DOI
12 Fox, T.A., Apelt, C.J. and West, G.S. (1993), "The aerodynamics disturbance caused by the free-ends of a circular cylinder immersed in a uniform flow", J. Wind Eng. Ind. Aerod., 49(1-3), 389-400.   DOI   ScienceOn
13 Afgan, I., Moulinec, C., Prosser, R. and Laurence, D. (2007), "Large eddy simulation of turbulent flow for wall-mounted cantilever cylinders of aspect ratio 6 and 10", Int. J. Heat Fluid Fl., 28(4), 561-574.   DOI   ScienceOn
14 Dobriloff, C. and Nitsche, W. (2009), Surface pressure and wall shear stress measurements on a wall mounted cylinder, Imaging Measurement Method., NNFM 106.
15 Frederich, O., Wassen, E. and Thiele, F. (2008), "Prediction of the flow around a short wall-mounted finite cylinder using LES and DES", J. Numer. Anal.Ind. Appl. Math., 3(3-4), 231-247.
16 Frohlich, J. and Rodi, W. (2004), "LES of the flow around a circular cylinder of finite height", Int. J. Heat Fluid Fl., 25(3), 537-548.   DOI   ScienceOn
17 Hain, R., Kohler, C.J. and Michaelis, D. (2008), "Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate", Exp. Fluids, 45(4), 715-724.   DOI
18 Holman, J.P. (1994), Experimental methods for engineers, McGraw-Hill Book Company, NewYork.
19 Karem, A. and Lu, P.C. (1992), "Pressure fluctuations on flat roofs with parapets", J. Wind Eng. Ind. Aerod., 41-44, 1775-1786.
20 Kareem, A. and Cheng, C.M. (1999), "Pressure and force fluctuations on isolated roughened circular cylinders of finite length in boundary layer flows", J. Fluid. Struct., 13(7-8), 907-933.   DOI   ScienceOn
21 Kawamura, T., Hiwada, M., Hibino, T., Mabuchi, I. and Kamuda, M. (1984), "Flow around a finite circular cylinder on a flat plate", Bull. JSME, 27(232), 2142-2151.   DOI
22 Kitagawa, T., Fujino, Y., Kimura, K. and Mizuno, Y. (2002), "Wind pressures measurement on end-cell-induced vibration of a cantilevered circular cylinder", J. Wind Eng. Ind. Aerod., 90(4-5), 395-405.   DOI   ScienceOn
23 Kopp, G.A., Mans, C. and Surry, D. (2005), "Wind effects of parapets on low buildings: part 2. structural loads", J. Wind Eng. Ind. Aerod., 93(11), 843-855.   DOI   ScienceOn
24 Krajnovic, S. (2011), "Flow around a tall finite cylinder explored by large eddy simulation", J. Fluid Mech., 676, 294-317.   DOI   ScienceOn
25 Li, Y.Q., Tamura, Y., Yoshida, A., Katsumura, A. and Cho, K. (2006), "Wind loading and its effects on single-layer reticulated cylindrical shells", J. Wind Eng. Ind. Aerod., 94(12), 949-973.   DOI   ScienceOn
26 Mans, C., Kopp, G.A. and Surry, D. (2005), "Wind effects of parapets on low buildings: part 3. Parapet loads", J. Wind Eng. Ind. Aerod., 93(11),857-872.   DOI   ScienceOn
27 Park, C.W. and Lee, S.J. (2003), "Flow structure around two finite circular cylinders located in an atmospheric boundary layer: side-by-side arrangement", J. Fluid. Struct., 17(8), 1043-1058.   DOI   ScienceOn
28 Okamoto, T. and Yagita, M. (1973), "The experimental investigation on the flow past a circular cylinder of finite length placed normal to the plane surface in a uniform stream", Bull. JSME, 16(95), 805-814.   DOI
29 Okamoto, S. and Sunabashiri, Y. (1992), "Vortex shedding from a circular cylinder of finite length placed on a ground plane", J. Fluid.Eng. - T ASME, 114(4), 512-521.   DOI
30 Park, C.W. and Lee, S.J. (2002), "Flow structure around a finite circular cylinder embedded in various atmospheric boundary layers", Fluid Dyn. Res., 30(4), 197-215.   DOI   ScienceOn
31 Pattenden, R.J., Turnock, S.R. and Zhang, X. (2005), "Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane", Exp. Fluids, 39(1), 10-21.   DOI
32 Portela, G. and Godoy, L.A. (2005), "Wind pressures and buckling of cylindrical steel tanks with a dome roof", J. Constr. Steel Res., 61(6), 808-824.   DOI   ScienceOn
33 Purdy, D.M., Maher, P.E. and Frederick, D. (1967), "Model studies of wind loads on flat-top cylinders", J. Struct. Division - ASCE, 93, 379-395.
34 Roh, S.C. and Park, S.O. (2003), "Vortical flow over the free end surface of a finite circular cylinder mounted on a flat plate", Exp. Fluids, 34(1), 63-67.   DOI   ScienceOn
35 Shih, W.C.L., Wang, C. and Coles, D. (1993), "Experiments on flow past rough circular cylinders at large Reynolds numbers", J. Wind Eng. Ind. Aerod., 49 (1-3), 351-368.   DOI   ScienceOn
36 Stathopoulos, T. (1982), "Wind pressures on low buildings with parapets", J. Struct. Division - ASCE, 108(12), 2723-2736.