• Title/Summary/Keyword: flat space

Search Result 504, Processing Time 0.029 seconds

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications (고속 LVDS 응용을 위한 전송 접속 경로의 분석 및 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.761-764
    • /
    • 2007
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and πace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects.

  • PDF

Spatial Structure Analysis of View Angle Correction reflecting Characteristics of Universal Observation (보편적 주시특성을 반영한 시야각 보정 공간구조 분석)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6917-6924
    • /
    • 2015
  • The universal nature of humans is formed by the view angle and the visibility range. However, the majority of theories on spatial structure analysis based on the visual perception do neither reflect the view angle nor consider only the flat view angle. Some theories that reflect them is a theory where the part included in the view angle and the part excluded in the view angle have been separated in a dichotomous way, excluding the universal characteristics of humans. This study applied an observing probability to a 3-D visibility analysis theory by conducting a eye-tracking experiment, empirically determining the limits of the field of view, and deriving the observing probability by view angle. In addition, it attempted to identify the probability by manufacturing an application of spacial, visual perception analysis and applying the concept of multiple frustum culling. For the characteristics of observation, the data were measured and collected regarding the walking course for 3 minutes for an optional space, aimed for 33 people as subjects. Subsequently, the data were prepared by analyzing the observation fixation frequency probability.

Sensitivity of Feedback Channel Delay on Transmit Adaptive Array (적응형 송신 빔 성형을 적용한 CDMA 시스템의 귀환 채널 지연에 따른 성능)

  • 안철용;한진규;김동구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.579-585
    • /
    • 2002
  • The investigation into the effect of various feedback errors on system performance can help the robust feedback channel design and transmission of exact feedback channel information as well. In this paper, we address the algorithm that determines space combining weight vector maximizing received signal power at mobile on frequency flat fading channel and investigate the performance degradation by feedback channel delay in the FDD/CDMA systems employing transmit beamforming. We observe the effect of feedback channel delay corresponding to the number of transmit antennas and the temporal/spatial correlation of channel. The results show that performance is more sensitive to feedback delay with the larger number of antennas when fadings at transmit antennas are not spatially correlated.

Design and Optimization of an Knee Joint of Fully-active Transfemoral Prosthesis for Stair Walking (계단 보행을 위한 능동형 대퇴의지 무릎 관절의 설계 및 최적화)

  • Ahn, Hyoung-Jong;Lee, Kwang-Hee;Hong, Yi;Lee, Chul-Hee
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • In this study, a fully active transfemoral prothesis with a knee joint is designed considering stair walking conditions. Since the torque at the knee joint required for stair walking condition is relative high compared with the one in normal walking condition, the proposed design has high torque generating mechanism. Moreover, the transfemoral prothesis is designed in compact size to reduce its weight, which is related to comfortable fit and fatigue of patients. Flat type BLDC motor is used for simple and compact structure and various components are used to generate required torque with target working angle and speed. The weight reduction of structure is carried out using optimization method after the initial design process is complete. The optimization is conducted under the load conditions of stair walking. The optimized design is validated via finite element analysis and experiments. As a result, the weight is reduced using topology and shape optimization but maintaining the safety of structure. Also the space efficiency is improved due to its compact size.

Room Acoustic Design in International Convention Center Jeju (제주국제컨벤션센터 컨퍼런스홀의 건축음향 설계)

  • 주현경;오양기;두세진;김하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.802-807
    • /
    • 2003
  • International Convention Center Jeju(ICCJ) was planed and built for accommodating a variety of conventional and exhibitional activities. For a better flexibility of operation, almost all rooms in ICCJ are designed to be subdivided Into a couple of small rooms with installation of movable partition walls. Architectural and acoustical design should be deliberatively and cooperatively undertaken to cope with such a complex condition. Conference hall, the largest room in ICCJ, has a capacity of 5000 seats who:1 used as a whole. It could be divided into 3 halls, one with 2000 pre-installed seats on slanted floor, up/down removable stage and its settings above, and the other 2 flat rooms with no seats installed. A devided hall with pre-installed seats and stage is designed for a multi-use auditorium. Almost all surfaces except ceilings adjacent to the stage are sound absorptively treated, in regard to extensive use of sound reinforcement systems. Its reverberation time 1.65 sec without audience, which is roughly correspond to 1.50 sec with fully occupied audience. When there is a need for a larger room, all the partition wail Is removed and the hall could be used as a whole. Exhibition hall is located in the first floor of ICCJ. Absorption and softness are needed for the hat 1 because exhibition behavior has something noisy features. Perforated MDF panels with porous materials and air space in the back groundare adopted for the walls. There are one large, two medium, and several small convention rooms in ICJJ. The room are also acoustically designed for maximum flexibility with no defects soundwisely.

  • PDF

Vacuum Sealing Technology of the Flat Panel Display by using the Frit Glass Heatable in Vacuum (진공에서 소성 가능한 프릿을 이용한 평판디스플레이 진공실장기술)

  • Kwon, Sang Jik;Yoo, In Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2016
  • One of the important issues for fabricating the microelectronic display devices such as FED, PDP, and VFD is to obtain a high vacuum level inside the panel. In addition, sustaining the initial high vacuum level permanently is also very important. In the conventional packing technology using a tabulation method, it is not possible to obtain a satisfiable vacuum level for a proper operation. In case of FED, the poor vacuum level results in the increase of operating voltage for electron emission from field emitter tips and an arcing problem, resultantly shortening a life time. Furthermore, the reduction of a sealing process time in the PDP production is very important in respect of commercial product. The most probable method for obtaining the initial high vacuum level inside the space with such a miniature and complex geometry is a vacuum in-line sealing which seals two glass plates within a high vacuum chamber. The critical solution for the vacuum sealing is to develop a frit glass to avoid the bubbling or crack problems during the sealing process at high temperature of about $400^{\circ}C$ under the vacuum environment. In this study, the suitable frit power was developed using a mixture of vitreous and crystalline type frit powders, and a vacuum sealed CNT FED with 2 inch diagonal size was fabricated and successfully operated.

New bimaxillary orthognathic surgery planning and model surgery based on the concept of six degrees of freedom

  • Jeon, Jaeho;Kim, Yongdeok;Kim, Jongryoul;Kang, Heejea;Ji, Hyunjin;Son, Woosung
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.42-52
    • /
    • 2013
  • The aim of this paper was to propose a new method of bimaxillary orthognathic surgery planning and model surgery based on the concept of 6 degrees of freedom (DOF). A 22-year-old man with Class III malocclusion was referred to our clinic with complaints of facial deformity and chewing difficulty. To correct a prognathic mandible, facial asymmetry, flat occlusal plane angle, labioversion of the maxillary central incisors, and concavity of the facial profile, bimaxillary orthognathic surgery was planned. After preoperative orthodontic treatment, surgical planning based on the concept of 6 DOF was performed on a surgical treatment objective drawing, and a Jeon's model surgery chart (JMSC) was prepared. Model surgery was performed with Jeon's orthognathic surgery simulator (JOSS) using the JMSC, and an interim wafer was fabricated. Le Fort I osteotomy, bilateral sagittal split ramus osteotomy, and malar augmentation were performed. The patient received lateral cephalometric and posteroanterior cephalometric analysis in postretention for 1 year. The follow-up results were determined to be satisfactory, and skeletal relapse did not occur after 1.5 years of surgery. When maxillary and mandibular models are considered as rigid bodies, and their state of motion is described in a quantitative manner based on 6 DOF, sharing of exact information on locational movement in 3-dimensional space is possible. The use of JMSC and JOSS will actualize accurate communication and performance of model surgery among clinicians based on objective measurements.

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

A Study on the Evaluation and Improvement of Student Convenient Facilities at University Campuses, based on Universal Design Concept - Focused on the university campuses in Texas, U.S.A. - (유니버설디자인 개념에 의거한 대학내 학생편의시설 평가 및 개선방향에 대한 연구 - 미국 텍사스주를 중심으로 -)

  • Kim, Won-Pil
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.3
    • /
    • pp.19-28
    • /
    • 2014
  • Student halls and their convenient facilities have been a focal point for various student activities at university campus. It has been for most of the student a place of unique memories and of attachment often associated with those good and bad school days. However, it is questionable whether these facilities are supportive and accessible for all of the students and other users including the handicapped. Therefore, based on the concept of UD(universal design) which was widely applied to U.S. institutions, this study intended to evaluate student hall facilities in U.S. and to provide an improvement direction for Korean UD application. For that purpose, four universities were selected for an in-depth analysis and 76 survey indices were utilized based on previous research. It was found that (1) design consideration without braille sign for VIP(visually impaired person) in student buildings can be differently approached with electronic devices; (2) the best demonstration of UD in student buildings can be seen in spacious flat pathway, easy access through ramp and wide entry area, necessary for people in wheel-chairs, but used by all, implying an increase of the ratio of public space; (3) one of the good UD features is an attractive physical environment rather than institutional appearance, in which they ultimately will support and completely adaptable at optimal levels by everyone; (4) consistent maintenance and management maximize the potential of UD principles and minimize physical limitations.