• Title/Summary/Keyword: flashover

Search Result 321, Processing Time 0.031 seconds

Switching Impulse Flashover Tests and Analysis for 765kV Jumper V-strings with Damaged Insulators

  • Choi, In-Hyuk;Shin, Koo-Yong;Lee, Dong-Il;Lim, Jae-Sup;Kim, Young-Hong;Lee, Hyung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.359-363
    • /
    • 2013
  • The 765kV transmission line will be maintained by live-line works for efficient operation. In order to maintain the 765kV transmission lines safely by live-line works, lineman has to know switching impulse flashover characteristics of the jumper V-strings with damaged insulators in advance. In order to know the flashover characteristics this paper carried out experimental flashover mockup tests for jumper V-string with damaged insulators in the outdoors. And it suggests flashover characteristics of the 765kV jumper V-strings also. The results will be used in estimating the safety of live working for 765kV transmission lines.

A Flashover Prediction Method by the Leakage Current Monitoring in the Contaminated Polymer Insulator (누설 전류 모니터링에 의한 오손된 고분자 애자에서의 섬락 예지 방법)

  • 박재준;송영철
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.364-369
    • /
    • 2004
  • In this Paper, a flashover prediction method using the leakage current in the contaminated EPDM distribution polymer insulator is proposed. The leakage currents on the insulator were measured simultaneously with the different salt fog application such as 25g, 50g, and 75g per liter of deionized water. Then, the measured leakage currents were enveloped and transformed as the CDFS using the Hilbert transform and the level crossing rate, respectively. The obtained CDFS having different gradients(angles) were used as a important factor for the flashover prediction of the contaminated polymer insulator. Thus, the average angle change with an identical salt fog concentration was within a range of 20 degrees, and the average angle change among the different salt fog concentrations was 5 degrees. However, it is hard to be distinguished each other because the gradient differences among the CDFS were very small. So, the new weighting value was defined and used to solve this problem. Through simulation, it Is verified that the proposed method has the capability of the flashover prediction.

Flashover Failure of Polymer Insulator in Distribution Lines (배전용 폴리머애자의 섬락고장)

  • 한재홍;이병성;김찬영;윤태상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.767-770
    • /
    • 2000
  • This study was investigated for searching a cause of flashover failure of polymer insulator and preparing countermeasures. Hydrophobicity, microstructure and chemical structural change of polymer weathershed were studied by polymer characterization methods. In addition, the electrical properties such as power frequency dry flashover voltage/impulse voltage tests, contamination characteristics were carried out. The hydrophobicity of polymer weathershed was decreased significantly and cracks were observed on the surface. Also, the electrical characteristics did not satisfy the KEPCO specification. The failed polymer insulators showed the more leakage current than 4 years service-aged ones. From the result, it can be concluded that the flashover failure of polymer insulator was attributed to the surface aging and severe contamination.

  • PDF

Electrical insulation characteristics with simulated electrode system of HTS (HTS pancake 코일을 모의한 전극계에서의 전기절연 특성)

  • Joung, Jong-Man;Baek, Seung-Myeong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.58-63
    • /
    • 2002
  • For the experiment the four types of spacer were distinguished by arrangement. The flashover characteristic on each types of spacer was investigated and the flashover phenomena were observed to understand breakdown mechanism in liquid nitrogen($LN_{2}$). The spacer should be placed interior coil as an insulator, a cooling channel and s supporter of structures. The simulated electrode used in the experiment was made from five turns of HTS tape. Experimental results revealed that multi-layer and barrier effects did work well in Air but did not in $LN_{2}$. These result suggested that the flashover in LN2 caused by the bubbles due to partial discharge at micro gap, g. The flashover characteristics decreased to 70% when g is 0.2 mm. The degradation was improved by even treatment on surface of coil electrode.

  • PDF

Breakdown Characteristics of Air in the Gap between Line Conductor and Plane Electrode in Case of Combustion Flame on the Plane Electrode (선도체 대 평면전극 갭에서 평면전극에 연소화염 존재시 대기의 절연파괴 특성)

  • Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • Breakdown characteristics of air in the vertical arrangement of line conductor and plane electrode in case of combustion flame on the plane electrode are examined by the application of AC. and DC voltages to the gap. In order to investigate the effect of paraffin flame on the breakdown characteristics of air, flashover voltages are measured according to the variation of the gap length and the horizontal distance between the flame and the line conductor. As the result of the experiment, flashover voltages are substantially lowered down to 29.8% in case of the AC voltage, and 16.1% in case of the negative DC voltage, when in the presence of the flame. from 100% when in the absence of flame. Flashover voltages of air in the range of smaller than 3㎝ at the horizontal distance are increased in the proportion of the gap length and the horizontal distance in case of both AC and negative DC voltages. But before the flashover occurs, the flame is extinguished by such corona wind that is produced from the line conductor when the gap length and the horizontal distance reach to a certain degree. The effect of relative air density and the phenomenon of thermal ionization are analysed as the reduction factors of flashover voltages, due to high temperature of the flame.

A Review of the Flashover Performance of High Voltage Insulators Constructed with Modern Insulating Materials

  • Khatoon, Shabana;Khan, Asfar Ali;Singh, Sakshi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.246-249
    • /
    • 2017
  • Pollution flashover of outdoor insulators is a common risk, which affects the safe operation of overhead transmission networks. Early electrical power systems, which feature insulators made from ceramic materials have been used all over the world with good performance. At present, non-ceramic insulators are in common use, as a result of their good electrical as well as mechanical properties. The aim of this paper is to discuss and compare the flashover performance of insulators typically used in power lines, such as, porcelain, ethylene-propylene-diene-monomer (EPDM) rubber, room temperature vulcanized (RTV) and high temperature vulcanized (HTV) coated silicone rubber. The effect of various parameters, including the severity of pollution, ice accumulation, and shade profile, are considered.. From the studies reviewed it was concluded that there is a distinct difference in the flashover voltages of different types of insulators, and the silicone provides the best flashover performance of all insulating materials.

Influence of the Combustion Flames on the Flashover Characteristics of the Sphere-Sphere Air Gap (구-구갭의 섬락 특성에 미치는 연소화염의 영향)

  • Kim, In-Sik;Lee, Sang-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, reduction characteristics of the AC and DC flashover voltage in the horizontal air gap of sphere-sphere electrode system were investigated when the combustion flame was present near the high voltage electrode. The voltage and current waveforms were measured, when the flashover is occurred, in order to examine the flashover polarity by flame. The reduction characteristics of AC flashover voltage were discussed with the thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that caused by the coulomb's force. As the results of an experimental investigation, It was found that the reduction of flashover voltages in sphere-sphere system, in comparison with the no flame case, are $79.9[\%]$ for k=0, $82.9[\%]$ for k=0.5, $87.5[\%]$ for k=1.0, $85.0[\%]$ for h=0[cm], $40.8[\%]$ for h=5[cm] and $28.2[\%]$ for h=9[cm] when ac voltage is applied. The influence for thermal ionization process of the combustion flame in small scale no particular change is recognized.

A Study on the Prediction of Flashover Time and Heat Release Rate(HRR) for Building Interior Materials (건축 내장재의 Flashover시간 및 열방출량 예측에 관한 연구)

  • 하동명
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.30-38
    • /
    • 2004
  • An important characteristics during fire growth is the phenomena of flashover, which is the transition from the local combustion to the full-room fire. The aim of this study is to predict the flashover times, the ignition times and HRR(heat release rate) of flashover for building interior materials. By using the literature data and RSM(response surface methodology), the new equations for predicting the flashover time, the ignition time and the HRR of building interior materials are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated flashover times were 38.74sec and 51.24sec respectively, and the correlation coefficient was 0.975. The A.A.P.E and the A.A.D of the reported and the calculated ignition times were 10.96sec and 1.97sec, and the correlation coefficient was 0.962. Also the A.A.P.E and the A.A.D. of the reported and the calculated the HRR of flashover by means of times were 29.92 and 514, and the correlation coefficient was 0.830. The values calculated by the proposed equations were in good agreement with the literature data. Therefore, it is expected that this proposed equations will support the use of the research for other building interior materials.