• 제목/요약/키워드: flame radius

검색결과 41건 처리시간 0.026초

구형 화염핵 발달과정의 예측 (Prediction of Development Process of the Spherical Flame Kernel)

  • 한성빈;이성열
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.59-65
    • /
    • 1993
  • In a spark ignition engine, in order to make research on flame propagation, attentive concentration should be paid on initial combustion stage about the formation and development of flame. In addition, the initial stage of combustion governs overall combustion period in a spark ignition engine. With the increase of the size of flame kernel, it could reach initial flame stage easily, and the mixture could proceed to the combustion of stabilized state. Therefore, we must study the theoretical calculation of minimum flame kernel radius which effects on the formation and development of kernel. To calculate the minimum flame kernel radius, we must know the thermal conductivity, flame temperature, laminar burning velocity and etc. The thermal conductivity is derived from the molecular kinetic theory, the flame temperature from the chemical reaction equations and the laminar burning velocity from the D.K.Kuehl's formula. In order to estimate the correctness of the theoretically calculated minimum flame kernel radius, the researcheres compared it with the RMaly's experimental values.

  • PDF

부상화염에서 화염전파속도에 따른 스칼라소산율과 곡률반경에 대한 수치적 연구 (A Numerical Study for the Scalar Dissipation Rate and the Flame Curvature with Flame Propagation Velocity in a Lifted Flame)

  • 하지수;김태권;박정;김경호
    • 한국가스학회지
    • /
    • 제14권3호
    • /
    • pp.46-52
    • /
    • 2010
  • 삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염전파속도를 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률 반경과 스칼라소산율에 따른 삼지화염 전파속도에 관하여 논의된 바가 없으며, 본 논문에서는 수치해석을 통해 화염전파속도에 따른 화염의 곡률반경과 스칼라소산율의 관계를 살펴보았다. 본 논문의 결과로 연료의 노즐 출구속도에 따라 화염전파속도가 거의 선형적으로 변화됨을 알 수 있었다. 또 화염전파속도에 따라 스칼라소산율은 비선형적인 감소를 보였으며, 곡률반경은 거의 선형적인 변화를 보임을 알 수 있었다. 또 스칼라소산율에 따른 곡률 반경의 경우 비선형적인 감소를 보였다. 따라서 화염전파속도와 스칼라소산율 및 화염의 곡률반경 사이에 직접적인 연관성이 있는 것을 확인하였다.

부상화염에서 화염 곡률반경 특성에 관한 연구 (A Study on the Flame Curvature Characteristics in a Lifted Flame)

  • 하지수;김태권;박정;김경호
    • 한국가스학회지
    • /
    • 제14권2호
    • /
    • pp.34-39
    • /
    • 2010
  • 삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염 전파속도를 실험으로 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률에 따른 삼지화염 전파속도에 관하여 논의된 바가 없기에, 본 논문에서 화염의 곡률에 따른 화염전파속도의 연관성을 제시하고자 하였다. 본 논문의 결과로 층류부상화염의 부상높이가 연료의 출구속도와 노즐의 직경에 따라서 결정됨을 알 수 있었다. 그리고 정지된 부상화염의 유동속도에 비례하는 연료의 출구속도에 곡률의 크기가 비례함을 보였고, 또 층류부상화염의 부상높이가 높아질수록 곡률반경의 크기가 커짐을 알 수 있었다. 따라서 곡률효과의 중요성이 인식되어야 하며 화염안정화 메커니즘을 표현하기 위해 제안된 Bilger의 제안식이 곡률효과를 고려하여 수정되어야한다.

무중력에서의 비예혼합 메탄-공기 화염의 전산 II. 화염의 반경과 두께 (Computation of Nonpremixed Methane-Air Flames in Microgravity II. Radius and Thickness of Flame)

  • 박외철
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.124-129
    • /
    • 2004
  • 초 록 : 확산화염 시뮬레이션에 대해 수치법을 검증하고 변형률과 연료농도가 화염반경과 두께의 변화에 미치는 영향을 조사하기 위해, Fire Dynamics Simulator (FDS)를 사용하여 무중력의 비예혼합 메탄-공기 대향류 화염을 축대칭으로 모사하였다. 연료 중 메탄의 몰분율 $X_m=20,\;50,\;80\%$와 각각의 몰분율에서 세 가지 변형률 $a_g=20,\;60,\;90s^{-1}$$1000^{\circ}C$ 기준 화염반경과 화염두께를 조사하였다. 변형률이 클수록 화염반경은 증가하였으나 화염두께는 거의 선형적으로 감소하였다. 또 화염반경은 메탄농도가 높을수록 감소하였으나, 변형률의 영향만큼 메탄농도에 민감하지 않았다. FDS와 OPPDIF로 각각 구한 무차원 화염두께가 잘 일치하므로, 넓은 범위의 연료농도와 변형률에서 FDS가 대향류 확산화염의 화염구조를 잘 예측할 수 있음을 확인하였다.

U-곡관 노즐에서 예혼합화염에 미치는 이차 유동의 영향 (Effect of Secondary Flow on a Premixed Flame in the U-bend Nozzle)

  • 김형근;차민석;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.91-101
    • /
    • 1998
  • The effect of secondary flow on both methane/air and propane/air premixed flame was investigated experimentally. By changing the radius of curvature, various flame behavior was observed. In the V-bend nozzles, flame surface is deformed from axisymmetry. As the exit velocity increased, flame lifted off partially. When the radius of curvature of the V-bend increased, the region where premixed flame is entirely on the rim increased. Since the axial velocity field is changed due to the secondary flow effect, comparison of V-bend and straight tube with the same diameter shows larger V-bend nozzle exit velocity for both flash back and flame blowout. The flame characteristics are mapped with a equivalence ratio, a velocity, and a nozzle radius of curvature. To identify physical reasoning on the flame surface deformation, numerical calculations are conducted. OH radical distributions in flames are visualized by PLIF technique.

  • PDF

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 2. Global Strain Rate

  • Park, Woe Chul
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2003
  • In Part 1, the flame structure of the counterflow nonpremixed flames computed by using Fire Dynamics Simulator was compared with that of OPPDIF for different concentrations of methane in the fuel stream. In this study, comparisons were made for the global strain rate that is an important parameter for diffusion flames for further evaluation of FDS. At each of the three fuel concentrations, $20% CH_4+ 80% N_2, 50% CH_4 + 50% N_2, 90% CH_4 + 10% N_2$ in the fuel stream, the temperature and axial velocity profiles were investigated for the global strain rate in the range from 20 to $100s^{-1}$. Changes in flame thickness and radius were also compared with OPPDIF. There was good agreement in the temperature and axial velocity profiles between the axisymmetric simulations and the one-dimensional computations except for the regions where the flame temperature reach its peak and the axial velocity rapidly changes. The simulations of the axisymmetric flames with FDS showed that the flame thickness decreases and the flame radius increases with increasing global strain rate.

화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구 (A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate)

  • 김경호;김태권;박정;하지수
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.47-56
    • /
    • 2011
  • 삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염전파속도를 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률 반경과 스칼라소산율 및 삼지화염의 화염전파속도에 관한 직접적인 관계에 관하여 제시된 바가 없었다. 본 논문은 실험과 수치해석에 따른 수치해석 결과를 검증하고, 수치해석을 통해 스칼라소산율에 따른 화염전파속도를 확인하였다. 그리고 화염스트레치 분석을 통하여 화염전파속도의 곡률반경 및 스칼라소산율에 따른 의존도를 명확히 하였다.

스파크 점화기관의 난류화염전파 모델의 개선에 관한 연구 (A Study on the Refinement of Turbulent Flame Propagation Model for a Spark-Ignition Engine)

  • 최인용;전광민
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2030-2038
    • /
    • 1995
  • In this study, three turbulent flame propagation models are compared using experimentally measured data of a 4 valves/cylinder spark-ignition engine. First two conventional models are B.K model and GESIM combustion model. The burning rates calculated from the two models are compared with the burning rates calculated from measured pressure data using the one-zone heat release analysis. GESIM combustion model predicts burning rates closer to the data acquired from the experiment in wide operating ranges than B-K model does. The third model is refined based on GESIM combustion model by including the effect of flame stretch, turbulent length scale band pass filter and a variable that considers flame size and the area of flame contacting the cylinder wall surface. The refined combustion model predicts burning rates closer to experimental results than GESIM combustion model does. Also, the refined combustion model predicts flame radius close to the experimental result measured by using optical fiber technique.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 1. Concentration of Fuel

  • Park, Woe-Chul
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.7-11
    • /
    • 2003
  • Structure of the counterflow nonpremixed flames were investigated by using Fire Dynamics Simulator(FDS) and OPPDIF to evaluate FDS for simulations of the diffusion flame. FDS, employed a mixture fraction formulation, were applied to the diluted axisymmetric methane-air nonpremixed counterflow flames. Fuel concentration in the mixture of methane and nitrogen was considered as a numerical parameter in the range from 20% to 100% increasing by 10% by volume at the global strain rates of $a_g = 20S^{-l} and 80S^{-1}$ respectively. In all the computations, the gravity was set to zero since OPPDIF is not able to compute the buoyancy effects. It was shown by the axisymmetric simulation of the flames with FDS that increasing fuel concentration increases the flame thickness and decreases the flame radius. The centerline temperature and axial velocity, and the peek flame temperature showed good agreement between the both methods.

정적 연소실내 난류 예혼합화염 전파의 시뮬레이션 (Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel)

  • 권세진
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.