Browse > Article

A Study on the Flame Curvature Characteristics in a Lifted Flame  

Ha, Ji-Soo (Energy and Environmental Science, Keimyung University)
Kim, Tae-Kwon (School of Mechanical & Automotive Engineering, Keimyung University)
Park, Jeong (School of Mechanical Engineering, Pukyong National University)
Kim, Kyung-Ho (Department of Physics, Keimyung University)
Publication Information
Journal of the Korean Institute of Gas / v.14, no.2, 2010 , pp. 34-39 More about this Journal
Abstract
Flame propagation velocity is the one of the main mechanism of the stabilization of triple flame. To quantify the triple flame propagation velocity, Bilger presents the triple flame propagation velocity through the experiment, depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there has not been any attempt to quantify the triple flame propagation velocity with the radius of flame curvature. In the present research, a relation of the flame propagation velocity is proposed with the radius of flame curvature for the flame stabilization mechanism. As a result, we have shown that the height of lifted flame is determined with the nozzle diameter and exit velocity of fuel and presented that the radius of flame curvature is proportion to the nozzle exit velocity of fuel and height of lifted flame. Therefore, the importance of the radius of flame curvature has to be recognized. To discribe the flame stabilization mechanism, Bilger's formula has to be modified with flame curvature effect.
Keywords
triple flame; propagation velocity; radius of flame curvature; stretch rate; displacement velocity; mixture fraction; laminar burning velocity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Lee, S.H. Won, S.H. Jin, S.H. Chung, O. Fujita, K. Ito, Combust. Flame., 134, 411-20, (2003)   DOI   ScienceOn
2 R.W. Bilger, Y.C. Chen, Combust. Flame, 122, 377-399. (2000)   DOI   ScienceOn
3 H.G. Im, J.H. Chen, Combust. Flame., 119, 436-54, (1999)   DOI   ScienceOn
4 H.G. Im, J.H. Chen, Combust. Flame 126, 1384-392, (2001)   DOI   ScienceOn
5 R.D. Lockett, B. Boulanger, S.C. Harding, D.A. Greenhalgh, Combust. Flame., 119, 109-20, (1999)
6 C.E. Frouzakis, A.G. Tomboulides, J. Lee, K. Boulouchos, Combust. Flame., 130, 171-84, (2002)   DOI   ScienceOn
7 Y.S. Ko, S.H. Chung, Combust. Flame., 118, 151-63, (1999)   DOI   ScienceOn
8 H,. Phillips. Combust. Inst. 10, 1277-1283, (1965)
9 Chung, S. H. and Lee, B. J., Combust. Flame., 86, 62-72, (1991)   DOI   ScienceOn
10 Stephen R. Turns, An Introduction to Combustion 2nd, McGraw-Hill, (2000)
11 L. Muniz, M. G. Mungal, Combust. Flame., 111, 16-31, (1997)   DOI   ScienceOn
12 J.W. Dold, Combust. Flame., 76, 71-88, (1989)
13 J. Boulanger, L. Vervisch, J. Reveillon, S. Ghosal, Combust. Flame., 134, 355-68, (2003)   DOI   ScienceOn
14 T. Plessing, P. Terhoeven, N. Peters, M.S. Mansour, Combust. Flame., 115, 335-53, (1998)   DOI   ScienceOn
15 T.K. Kim, J.S Ha, P.Jeong, H.S. Um, K.H. Kim, KIGAS, 12, 77-84, (2008)   과학기술학회마을
16 Schlichting, H., Boundary-Layer Theory, McGraw-Hill, New York, 1979
17 C.K. Law, Combustion Physics, Cambridge University, 2006.