Computation of Nonpremixed Methane-Air Flames in Microgravity II. Radius and Thickness of Flame

무중력에서의 비예혼합 메탄-공기 화염의 전산 II. 화염의 반경과 두께

  • Park Woe-Chul (Department of Safety Engineering, Pukyong National University)
  • Published : 2004.09.01

Abstract

To evaluate the numerical method in simulation of diffusion flames and to see the effects of strain rate and fuel concentration on the flame radius and thickness, the nonpremixed methane-air counterflow flames in microgravity were simulated axisymmetrically by using the MST Fire Dynamics Simulator (FDS). The $1000^{\circ}C$ based flame radius and thickness were investigated for the mole fraction of methane in the fuel stream, $X_m=20,\;50,\;and\;80\%$ and the global strain rates $a_g=20,\;60,\;and\;90s^{-1}$ for each mole fraction. The flame radius increased with the global strain rate while the flame thickness decreased linearly as the global strain rate increased. The flame radius decreased as the mole fraction increased, but it was not so sensitive to the mole fraction compared with the global strain rate. Since there was good agreement in the nondimensional flame thickness obtained with OPPDIF and FDS respectively, it was confirmed that FDS is capable of predicting well the counterflow flames in a wide range of strain rate and fuel concentration.

초 록 : 확산화염 시뮬레이션에 대해 수치법을 검증하고 변형률과 연료농도가 화염반경과 두께의 변화에 미치는 영향을 조사하기 위해, Fire Dynamics Simulator (FDS)를 사용하여 무중력의 비예혼합 메탄-공기 대향류 화염을 축대칭으로 모사하였다. 연료 중 메탄의 몰분율 $X_m=20,\;50,\;80\%$와 각각의 몰분율에서 세 가지 변형률 $a_g=20,\;60,\;90s^{-1}$$1000^{\circ}C$ 기준 화염반경과 화염두께를 조사하였다. 변형률이 클수록 화염반경은 증가하였으나 화염두께는 거의 선형적으로 감소하였다. 또 화염반경은 메탄농도가 높을수록 감소하였으나, 변형률의 영향만큼 메탄농도에 민감하지 않았다. FDS와 OPPDIF로 각각 구한 무차원 화염두께가 잘 일치하므로, 넓은 범위의 연료농도와 변형률에서 FDS가 대향류 확산화염의 화염구조를 잘 예측할 수 있음을 확인하였다.

Keywords

References

  1. W. C. Park, 'Computation of Nonpremixed MethaneAir Diffusion Flames in Microgravity, I. Profiles of Flame Temperature and Axial Velocity,' J. Korea Inst. Industrial Safety, Vol. 19, No. 1, pp. 124-130, 2004
  2. K. B. McGrattan, H. R .Baum, R .G. Rehm, A. Hamins, G. P. Forney, J. E. Floyd, S. Hostikka and K. Prasad, Fire Dynamics Simulator (Version 3) Technical Reference Guide, NlST, Gaithersburg, MD, U.S.A., 2003
  3. A. Lutz, R .J. Kee, J. Grear and F. M .Rupley, 'A Fortran Program Computing Opposed Flow Diffusion Flames, SAND96-8243, Sandia National Laboratories, Livermore, CA, U.S.A., 1997