• 제목/요약/키워드: flame propagation

검색결과 363건 처리시간 0.026초

부상화염에서 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구 (The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Fuel Injection Velocity for a Liftoff Flame)

  • 하지수;김태권;박정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.466-475
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of fuel injection velocity at the fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity, but its effect on the flame propagation velocity is not much greater under 4%. The increase of fuel injection velocity affects directly and linearly on the flame surface area in the fuel rich region and so enhances volume integral of reaction rate to accommodate the increment of fuel.

피스톤 형상이 연소와 화염전파에 미치는 영향 (The Effect of Piston Configuration on Combustion and Flame Propagation)

  • 지명석;강기영
    • 한국산업융합학회 논문집
    • /
    • 제22권5호
    • /
    • pp.511-517
    • /
    • 2019
  • Two type pistons which had different configuration were made to find out the effects on combustion and flame propagation. Flame propagation speed was obtained by use of the cylinder head gasket ionization probe. Ionization Probe voltage output and flame propagation speed were increased according to the air fuel mixture ratio increase. Exhaust direction flame propagation speed was fastest in combustion chamber and next was front direction, rear direction and intake direction cause of tumbling motion in cylinder. In case of remove the valve pocket in piston, average flame propagation speed changed slowly and spark timing was advanced. Also emission was decreased.

Evolution of Flame Shape to a Vortex Pair

  • Rhee, Chang-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.623-629
    • /
    • 2001
  • The PSC (Propagation of Surfaces under Curvature) algorithm is adapted to the simulation of a flame propagation in a premixed medium including the effect of volume expansion across the flame front due to exothermicity. The algorithm is further developed to incorporate the flame anchoring scheme. This methodology is successfully applied to numerically simulate the response of an anchored V-flame to two strong free stream vortices, in accord with experimental observations of a passage of Karman vortex street through a flame. The simulation predicts flame cusping when a strong vortex pair interacts with flame front. In other words, this algorithm handles merging and breaking of the flame front and provides an accurate calculation of the flame curvature which is needed for flame propagation computation and estimation of curvature-dependent flame speeds.

  • PDF

난류 혼합층 확산화염에서 부상선단의 난류전파속도에 대한 연구 (Study on the Turbulent Edge Propagation Speed of a Lifted Diffusion Flame in Turbulent Mixing Layer)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.55-61
    • /
    • 2004
  • Leading front of a lifted diffusion flame in turbulent mixing layer was investigated in order to find a appropriate definition of the turbulent edge propagation speed. The turbulent lifted diffusion flame was simulated by employing the flame hole dynamics combined with level-set method which yields a temporally evolving turbulent extinction process. By tracing the leading front locations of the temporal flame edges, temporal variations of the liftoff height, local flow velocity, and edge propagation speed at the leading front were investigated and they demonstrated the flame-stabilization condition of the turbulent lifted flame. Finally, a turbulent edge propagation speed was defined and its temporal variation from the simulation was discussed.

  • PDF

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성 (Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

불꽃점화 구형분무화염에서 고공간 분해능을 가진 집광프로브의 응용 (Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames)

  • 양영준
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.20-25
    • /
    • 2004
  • In order to obtain the flame Propagation speed in freely falling droplet suspension Produced by an ultrasonic atomizer, a light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames. Two MICRO probes are used to monitor time-series signals of OH chemilumine-scence from two different locations in the flame. The flame propagation speed is calculated by detecting the arrival time difference of the propagating flame front. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the MICRO system. Furthermore, relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with k different experimental conditions by changing the fuel injection rate. It was confirmed that the MICRO probe system was very useful and convenient to obtain the flame propagation speed and that the flame propagation speed was different depending on the spray properties.

화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구 (A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate)

  • 김경호;김태권;박정;하지수
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.47-56
    • /
    • 2011
  • 삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염전파속도를 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률 반경과 스칼라소산율 및 삼지화염의 화염전파속도에 관한 직접적인 관계에 관하여 제시된 바가 없었다. 본 논문은 실험과 수치해석에 따른 수치해석 결과를 검증하고, 수치해석을 통해 스칼라소산율에 따른 화염전파속도를 확인하였다. 그리고 화염스트레치 분석을 통하여 화염전파속도의 곡률반경 및 스칼라소산율에 따른 의존도를 명확히 하였다.

벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석 (A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions)

  • 김남일;카오루마루타
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF

국소 슈미트수가 부상화염 및 화염전파속도에 미치는 영향에 관한 연구 (The Study on Effect of Local Schmidt Number on Lifted Flame and Its Propagation Velocity)

  • 전민규;이민정;정용진;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.75-76
    • /
    • 2015
  • Lifted flame stabilization mechanism can be explained with constant Schmidt number from the equation of $H^{\ast}_L/d^2_o=const{\times}v_e^{(2Sc-1)/(Sc-1)}$. In this research, a method of local Schmidt number was applied in order to measure edge flame propagation velocities, and edge flame propagation velocity was calculated from the trend between lift-off height and nozzle flow rate.

  • PDF