• Title/Summary/Keyword: flame image processing

Search Result 58, Processing Time 0.029 seconds

Analysis on Optimal Threshold Value for Infrared Video Flame Detection (적외선 영상의 화염 검출을 위한 최적 문턱치 분석)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.100-104
    • /
    • 2013
  • In this paper, we present an optimal threshold setting method for flame detection of infrared thermal image. Conventional infrared flame detection methods used fixed intensity threshold to segment candidate flame regions and further processing is performed to decide correct flame detection. So flame region segmentation step using the threshold is important processing for fire detection algorithm. The threshold should be change in input image depends on camera types and operation conditions. We have analyzed the conventional thresholds composed of fixed-intensity, average, standard deviation, maximum value. Finally, we extracted that the optimal threshold value is more than summation of average and standard deviation, and less than maximum value. it will be enhance flame detection rate than conventional fixed-threshold method.

A Study on the Flame Monitoring System Development (화염감시 시스템 개발에 관한 연구)

  • 백운보;황이철;이승종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.60-66
    • /
    • 2004
  • Increased energy costs have placed demands for improved combustion efficiency, high equipment availability, low maintenance and safe operation. Simultaneously low NOx modification, installed due to stricter environmental legislations, require very careful combustion management. The flame diagnostics system has been developed specially to meet these requirements. We aimed at gaining the relationship between burner flame image and emissions such as NOx and unburned carbon in furnace by utilizing the image processing method. For the first step of development, its possibility test was undertaken with bench furnace. The test proceeded to the second step with pilot furnace, the system was observed to be effective for evaluating the combustion conditions.

The Flame Image Observation for Monitoring Management of Pulverized Coals Firings and its Feasibility Test to Boilers for Thermal Power Plant (미분탄 연소의 감시 관리를 위한 화염영상 감시 및 발전용 보일러 적용시험)

  • Baek, Woon-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2008
  • The flame image observation and analysis has been investigated for combustion monitoring and management of the pulverized coal firing for thermal power plant, especially for lower nitrogen oxide generation and safer operation. We aimed at obtaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the conditions of combustion on the individual homers. Its feasibility test was undertaken with Samchonpo thermal power plant #4 unit which has 24 burners, through which the system was observed to be effective for evaluating the combustion conditions and continuous monitoring to prevent future loss of ignition.

Flame Image Analysis Systems for Combustion Conditions Monitoring (연소상태 감시용 화염 영상분석 시스템)

  • 백운보;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.499-502
    • /
    • 2003
  • Increase energy costs have placed demands for improved combustion efficiency, high equipment availability, low maintenance and safe operation. Simultaneously low NOx modification, installed due to stricter environmental legislation, require very careful combustion management. We aimed at gaining the relationship between burner flame image and emissions such as NOx and unburned carbon in furnace by utilizing the image processing method. For the first step of development, its possibility test was undertaken with bench furnace. The test proceeded to the second step with pilot furnace, the system was observed to be effective for evaluating the combustion conditions. By using this technology, it is possible to perform continuous monitoring of the combustion conditions and instant detection of individual changes for each burner to prevent future loss of ignition.

  • PDF

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

Visualization of luminescent radicals in the flame by image processing (영상처리에 의한 화염 발광 라디칼의 가시화)

  • 김경찬;김영민;정주영;김태권
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.264-269
    • /
    • 1998
  • The Measurement of concentration patterns for $C_2$, CH and OH radicals in the premixed propane-air flame could be managed through an image processing technique. This technique was applied to the three kinds of flames on a bunsen burner-mixtures of fuel to be lean, optimum and excessive respectively. The image processing system was complished by treating single wavelength flame images around the eac radical luminescence band, which was obtained by using a set of narrow band pass filters, an image intensifier, CCD and PC. It was possible to observe and predict the reaction zone and the concentration distribution of the radicals, Spatial distribution of each radicals in the raaction zone gave us enough informations to analyze the reaction mechanisms in $C_mH_n$ combustion process. According to this informations, the image of $C_2$ radical exists at front zone, following the images of CH and OH radicals at downstream.

  • PDF

Combustion Characteristics of the Methane-Oxygen Bipropellant Injected by a Shear-coaxial Injector (전단동축형인젝터를 통해 분사된 메탄-산소 이원추진제의 연소특성)

  • Hong, Joon Yeol;Bae, Seong Hun;Bae, Dae Seok;Kim, Jeong Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.787-790
    • /
    • 2017
  • This study is a preliminary research on characterization of methane - oxygen combustion used in bipropellant thruster. The limit of combustion stability and flame shape of methane - oxygen non-premixed flame injected by shear coaxial injector in the model combustion chamber Experimental studies have been carried out. A direct image of the flame was photographed using a DSLR camera, and combustion characteristics and flame length were quantified through image post-processing. As a result, it was confirmed that the stabilized flame was generated at the stoichiometric ratio as the oxidizer Reynolds number ($Re_o$) was increased, and the length of the turbulent flame was increased under the same injector diameter condition.

  • PDF

A Color Flame Region Segmentation Method Using Temperature Distribution Characteristics of Flame (화염의 온도 분포 특성을 이용한 컬러화염 영역분할 방법)

  • Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.33-37
    • /
    • 2014
  • This paper propose a method to sort flame regions and non-flame regions in a color image based on temperature Characteristics of flame. The traditional algorithms simply detect flame regions those are colored between yellow and red and there are lot of false detection in this method. But the colors of real flame are fallen between white and red and flame color variation over the flame. In this paper, it reduce false detection by separating colors according to temperature Characteristics of flame. The proposed method firstly finds a color model to express the temperature Characteristics of fire and then the color model is non-linearly quantized based on color values and analyzed using histogram and finally detect the candidate flame regions. The proposed method has 71.8% of matching rate and if it is compared with non-matching rate of traditional algorithms, the non-matching rate is improved by 27 times than others.

The Flame Color Analysis of Color Models for Fire Detection (화재검출을 위한 컬러모델의 화염색상 분석)

  • Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.52-57
    • /
    • 2013
  • This paper describes the color comparison analysis of flame in each standard color model in order to propose the optimal color model for image processing based flame detection algorithm. Histogram intersection values were used to analyze the separation characteristics between color of flame and color of non-flame in each standard color model which are RGB, YCbCr, CIE Lab, HSV. Histogram intersection value in each color model and components is evaluated for objective comparison. The analyzed result shows that YCbCr color model is the most suitable for flame detection by average HI value of 0.0575. Among the 12 components of standard color models, each Cb, R, Cr component has respectively HI value of 0.0433, 0.0526, 0.0567 and they have shown the best flame separation characteristics.

Fire-Flame Detection Using Fuzzy Logic (퍼지 로직을 이용한 화재 불꽃 감지)

  • Hwang, Hyun-Jae;Ko, Byoung-Chul
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.463-470
    • /
    • 2009
  • In this paper, we propose the advanced fire-flame detection algorithm using camera image for better performance than previous sensors-based systems which is limited on small area. Also, previous works using camera image were depend on a lot of heuristic thresholds or required an additional computation time. To solve these problems, we use statistical values and divide image into blocks to reduce the processing time. First, from the captured image, candidate flame regions are detected by a background model and fire colored models of the fire-flame. After the probability models are formed using the change of luminance, wavelet transform and the change of motion on time axis, they are used for membership function of fuzzy logic. Finally, the result function is made by the defuzzification, and the probability value of fire-flame is estimated. The proposed system has shown better performance when it compared to Toreyin's method which perform well among existing algorithms.