• Title/Summary/Keyword: flame detection rate

Search Result 36, Processing Time 0.023 seconds

Deep Learning Structure Suitable for Embedded System for Flame Detection (불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2019
  • In this paper, we propose a deep learning structure suitable for embedded system. The flame detection process of the proposed deep learning structure consists of four steps : flame area detection using flame color model, flame image classification using deep learning structure for flame color specialization, $N{\times}N$ cell separation in detected flame area, flame image classification using deep learning structure for flame shape specialization. First, only the color of the flame is extracted from the input image and then labeled to detect the flame area. Second, area of flame detected is the input of a deep learning structure specialized in flame color and is classified as flame image only if the probability of flame class at the output is greater than 75%. Third, divide the detected flame region of the images classified as flame images less than 75% in the preceding section into $N{\times}N$ units. Fourthly, small cells divided into $N{\times}N$ units are inserted into the input of a deep learning structure specialized to the shape of the flame and each cell is judged to be flame proof and classified as flame images if more than 50% of cells are classified as flame images. To verify the effectiveness of the proposed deep learning structure, we experimented with a flame database of ImageNet. Experimental results show that the proposed deep learning structure has an average resource occupancy rate of 29.86% and an 8 second fast flame detection time. The flame detection rate averaged 0.95% lower compared to the existing deep learning structure, but this was the result of light construction of the deep learning structure for application to embedded systems. Therefore, the deep learning structure for flame detection proposed in this paper has been proved suitable for the application of embedded system.

A Color Video Flame Detection Method based on Wavelet Transform to Remove Flickering Non-Flame Detection (점멸성 비화염 검출을 제거하는 웨이블릿변환 기반의 컬러영상 화염 검출 방법)

  • Sanjeewa, Nuwan;Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents color video flame detection algorithm based on wavelet transform to remove detection of flickering non-flame objects. Conventional flame detection algorithms consist of simple or mixed functions using colors, temporal and spatial characteristics. But those algorithms detect non-flame objects as flame regions sometimes. False alarm reasons are flame-like objects with regular flickering lights such as car signal lamps, alarm lights etc. The proposed algorithm is to reduce false detection which is occurred in periodic flickering lights. At first, It segments the candidate flame regions by using frame difference, flame colors. Then it distinguish flame regions and non flame regions including flickering car lights by analyzing wavelet coefficients. Computer simulation results showed that the proposed algorithm removes false detection due to the periodic flickering lamps by performing 97.9% of correct detection rate while false detection rate is 7.3%.

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

A Color Flame Region Segmentation Method Using Temperature Distribution Characteristics of Flame (화염의 온도 분포 특성을 이용한 컬러화염 영역분할 방법)

  • Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.33-37
    • /
    • 2014
  • This paper propose a method to sort flame regions and non-flame regions in a color image based on temperature Characteristics of flame. The traditional algorithms simply detect flame regions those are colored between yellow and red and there are lot of false detection in this method. But the colors of real flame are fallen between white and red and flame color variation over the flame. In this paper, it reduce false detection by separating colors according to temperature Characteristics of flame. The proposed method firstly finds a color model to express the temperature Characteristics of fire and then the color model is non-linearly quantized based on color values and analyzed using histogram and finally detect the candidate flame regions. The proposed method has 71.8% of matching rate and if it is compared with non-matching rate of traditional algorithms, the non-matching rate is improved by 27 times than others.

Analysis on Optimal Threshold Value for Infrared Video Flame Detection (적외선 영상의 화염 검출을 위한 최적 문턱치 분석)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.100-104
    • /
    • 2013
  • In this paper, we present an optimal threshold setting method for flame detection of infrared thermal image. Conventional infrared flame detection methods used fixed intensity threshold to segment candidate flame regions and further processing is performed to decide correct flame detection. So flame region segmentation step using the threshold is important processing for fire detection algorithm. The threshold should be change in input image depends on camera types and operation conditions. We have analyzed the conventional thresholds composed of fixed-intensity, average, standard deviation, maximum value. Finally, we extracted that the optimal threshold value is more than summation of average and standard deviation, and less than maximum value. it will be enhance flame detection rate than conventional fixed-threshold method.

A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network (합성곱 신경망을 이용한 선박 기관실에서의 화재 검출에 관한 연구)

  • Park, Kyung-Min;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.476-481
    • /
    • 2019
  • Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.

Video Flame Detection with Periodicity Analysis Based False Alarm Rejection (주기 신호 검출을 통한 거짓 경보 제거 기능을 갖춘 비디오 화염 감지 기법)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.479-485
    • /
    • 2011
  • A video flame detection method analyze the temporal and spatial characteristics of the regions which have the flame-like color and moving objects in the input video. The video flame detector should be able to reduce a false alarm rate without the degradation of flame detection capability. The conventional methods can reject the false alarm caused by the car lights and some electric lights. However they make the false alarm caused by the warning lights, neon sign, and some periodic flickering lights which have the flame-like color and temporal features. This paper propose the video flame detection method with periodicity analysis based false alarm rejection. The proposed method can detect the periodicity of the flickering electric lights and can reject the false alarm caused by the periodic electric lights. The computer simulation showed that the proposed method did not make the false alarm in the test video with the periodic electric lights. But the conventional methods made a false alarm in the same test video.

Flame detection algorithm using adaptive threshold in thermal video (적응 문턱치를 이용한 열영상 화염 검출 알고리즘)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • This paper proposed an adaptive threshold method for detecting flame candidate regions in a infrared image and it adapts according to the contrast and intensity changes in the image. Conventional flame detection systems uses fixed threshold method since surveillance environment does not change, once the system installed. But it needs a adaptive threshold method as requirements of surveillance system has changed. The proposed adaptive threshold algorithm uses the dynamic behavior of flame as featured parameter. The test result is analysed by comparing test result of proposed adaptive threshold algorithm and conventional fixed threshold method. The analysed data shows, the proposed method has 91.42% of correct detection rate and false detection is reduced by 20% comparing to the conventional method.

An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses (랙크식 물류창고 조기 화재감지를 위한 최적 화재감지기 설치방법에 관한 실험연구)

  • Choi, Ki Ok;Kim, Dong Suck;Hong, Sung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.38-45
    • /
    • 2017
  • This paper is an experimental study to find an optimal detection method for detecting fire early in a rack-type warehouse stored with goods. In this study, we constructed rack-type structure with the fourth floor of 13.5 m high and conducted fire experiments which were to measure flow of heat/smoke in rack-type structure and response time of fire detectors. The detectors used at experiments were fixed temperature type detectors, rate of rise detectors, photoelectric smoke detectors, air sampling smoke detectors and flame detectors. The used ignition sources are n-heptane fire for response of heat detection and cotton fire for response of smoke detection. The fixed temperature type detectors, rate of rise detectors and photoelectric detectors were installed to every rack level respectively. The results show that the rate of rise detector should be installed every 2 levels and photoelectric smoke detector should be installed every 4 levels for the early stage fire detection. Air sampling smoke detectors can detect fire early in response to control of sensitivity, but there is a problem in false alarm. The fixed temperature detector is not suitable for early stage fire detection in warehouse and flame detector not worked if flame is not visible, so it need to install combination with other detector.

A Low-cost Fire Detection System using a Thermal Camera

  • Nam, Yun-Cheol;Nam, Yunyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1301-1314
    • /
    • 2018
  • In this paper, we present a low-cost fire detection system using a thermal camera and a smartphone. The developed system collects thermal and RGB videos from the developed camera. To detect fire, candidate fire regions are extracted from videos obtained using a thermal camera. The block mean of variation of adjacent frames is measured to analyze the dynamic characteristics of the candidate fire regions. After analyzing the dynamic characteristics of regions of interest, a fire is determined by the candidate fire regions. In order to evaluate the performance of our system, we compared with a smoke detector, a heat detector, and a flame detector. In the experiments, our fire detection system showed the excellent performance in detecting fire with an overall accuracy rate of 97.8 %.