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Abstract 
 

This paper presents a fire detection algorithm with a minimal false detection rate, intended for 
a thermal imaging surveillance environment, whose properties vary depending on temporal 
conditions of day or night and environmental changes. This algorithm was designed to 
minimize the false detection alarm rate while ensuring a high detection rate, as required in fire 
detection applications. It was necessary to reduce false fire detections due to non-flame 
elements occurring when existing fixed threshold-based fire detection methods were applied. 
To this end, adaptive flame thresholds that varied depending on the characteristics of input 
images, as well as the center of gravity of the heat-source and hot-source regions, were 
analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame 
candidate blocks. Also, to remove any false detection elements caused by camera shaking, one 
of the most frequently raised issues at outdoor sites, preliminary decision thresholds were 
adaptively set to the motion pixel ratio of input images to maximize the accuracy of the 
preliminary decision. Finally, in addition to the preliminary decision results, the texture 
correlation and intensity of the flame candidate blocks were averaged for a specific period of 
time and tested for their conformity with the fire decision conditions before making the final 
decision. To verify the fire detection performance of the proposed algorithm, a total of ten test 
videos were subjected to computer simulation. As a result, the fire detection accuracy of the 
proposed algorithm was determined to be 94.24%, with minimum false detection, 
demonstrating its improved performance and practicality compared to previous fixed 
threshold-based algorithms. 
 
 
Keywords: video surveillance system, IR image processing, thermal image processing, fire 
detection, digital signal processing 
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1. Introduction 

A forest fire or general fire is a disaster that harms the natural ecosystem and inflicts 
significant human and physical damage on the national economy and society. To prevent such 
disasters, a great deal of research has been conducted on early detection of forest fires or 
outdoor and indoor fires. Meanwhile, existing fire or forest fire detection methods have 
primarily used detection systems based on physical sensors that can detect smoke or heat. 
However, because the detection is made only when the flame or smoke reaches the physical 
sensors, such methods involve a delay in detecting flame or smoke when a fire occurs. Also, 
due to the limited range of fire detection, these methods are unsuitable for broad outdoor areas 
or forest fires. To overcome these problems, there has been active researches carried out to 
develop image processing-based smart fire surveillance solutions using cameras capable of 
monitoring wide areas. Furthermore, these solutions have been extensively applied in practice 
to the fire surveillance field. Two types of systems are commonly used for video surveillance. 
One is a color camera system [2]-[7],[12],[13],[16], and the other is an infrared(IR) camera 
system [1],[8]-[11],[17].  

There are many existing algorithms to detect fire using color or infrared images.  
First, the color image based algorithms are as follows. In the paper [2], the algorithm 
comprises pixel-based fire motion and color analysis, with temporal analysis using a wavelet 
transform and spatial analysis using energy calculations of the fire area. In the paper [3], the 
authors propose a pixel-based fire color modeling that was developed in CIE-Lab color space, 
and fire motion analysis is used to detect fire events. In the paper [4], pixel-based fire motion is 
detected by background subtraction, edge detection, flame height, and width analysis, and 
color analysis methods are used for fire detection. In the paper [5], pixel-based frame 
difference calculations are used to extract the moving fire area, and color analysis and optical 
flow computation of  dynamic features extraction methods are applied for detecting fire. In the 
paper [6], fire regions are detected using pixel-based potential fire region extraction 
processing with a spectral and spatial model, and temporal property calculations using Fourier 
coefficients are used to detect fire regions. In the paper [7], a pixel-based modified histogram 
back-projection algorithm is used to detect flame regions. In the paper [12], authors  present 
pixel-based color analysis using a Gaussian smoothed color histogram, fire motion analysis 
based on  temporal variations in pixels, and erosion and region growing are performed to 
detect fire. In the paper [13], the authors propose a forest-fire monitoring system based on field 
information, infrared and visual image processing. This system is based on forest fire 
properties such as the fire front, flame height, flame inclination angle, fire base width, a three 
dimensional perception model, sensor fusion techniques involving telemetry sensors, and GPS. 
In the paper [16], the authors propose a fire detection algorithm which used image 
enhancement technique, RGB and YCbCr color models with given conditions to separate fire 
pixel from background and isolates luminance from chrominance contrasted from original 
image to detect fire.  

Secondly, IR image based algorithms are as follows. In the paper [1], fire alarm is decided 
solely based on the fixed threshold-based candidate block selection and the average degree of 
correlation measured from input images to check flame motion. In the paper [8], the different 
behaviors of medium (3-5 μm) and long (8-12 μm) IR spectral regions are used to calculate the 
two fire-index using two IR cameras working in the medium and thermal IR spectral windows, 
which are used to identify fires. In the paper [9], several software components based on 
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threshold, oscillation detection, matching of visual and IR images, memory, meteorologic 
information, motion, size, shape, solar conditions, and location are used to implement personal 
computer-based fire alarm system. In the paper [10], The proposed forest fire detection system 
combines computer vision tools, neural networks, and expert fuzzy rules to detect forest fires 
in open areas. In the paper [11], authors propose a forest-fire detection system based on images 
obtained from IR cameras. The algorithm utilize noise predictor to get better probability of 
detection. The noise predictor will compute the noise level of the cell under test. Then, this 
estimated level may be subtracted from the pixel under test, thus improving SNR and fire 
detection probability. In the paper [17], 940 nm narrow-band filter is applied to the camera to 
obtain an infrared image. Then, flame threshold and roundness of contour are analyzed to 
decide fire. 

These image processing-based smart fire surveillance systems mainly use color cameras, 
along with specific fire detection algorithms that analyze the color or motion of flame for fire 
detection. In these color image processing-based smart fire surveillance systems, flame colors 
are analyzed by examining the multiple color elements that constitute the standard color space, 
such as RGB, YCbCr, and HSV, and flame motion information. Thus, a great deal of data needs 
to be processed, requiring a significant amount of processing time. Also, using CCD or CMOS 
color cameras, it is difficult to obtain images or avoid image quality degradation at night, 
without a light source, or in unfavorable weather conditions. This inevitably leads to an 
inability to perform fire surveillance or to degrade detection performance 
[2]-[7],[12],[13],[16]. 

To overcome these constraints of limited operating conditions, extensive data processing, 
and long processing time, infrared thermal imaging-based smart fire surveillance methods 
have been introduced as alternatives because these methods are immune to the given 
surveillance environment and simple to use when performing real-time processing, given the 
simplicity of the image data used. An infrared camera is a device that forms an image by 
detecting the radiant energy emitted by the vibrating and rotating atoms and molecules 
contained in the subject. Here, it is worth noting that every object that is above absolute zero 
temperature emits radiant energy. Thus, this type of system is capable of taking images 
whenever desired, day or night, and regardless of weather conditions. Also, its images express 
the thermal energy of the subject using intensity variations, and therefore the amount of data to 
be processed is less when compared to color images [1],[8]-[11],[17].  

The infrared wavelength band of an infrared camera used for image-based surveillance 
includes the mid-infrared spectral range of 3-5μm and far-infrared range of 8-12μm. Infrared 
radiation is electromagnetic radiation with wavelengths longer than those of visible light and 
wavelengths shorter than communications wavelengths, i.e., 0.75 to 1,000μm. To be more 
specific, near-infrared is defined as radiation with a wavelength of 0.75-3μm; mid-infrared is 
3-6μm; far-infrared is 6-15μm; and extreme infrared is 15-1,000μm. Given the wavelength 
region of the energy emitted from surveillance targets, the detection characteristics of 
detectors, and the atmospheric transmission properties, in practice only part of this infrared 
radiation can be used, i.e., near-infrared with a wavelength near 1μm, mid-infrared with a 
wavelength of 3-5μm, and far-infrared with a wavelength of 8-12μm. There are two types of  
IR cameras, cooled type  and non-cooled type. The non-cooled type of camera has being 
extensively applied for civilian surveillance applications. This non-cooled type infrared 
camera does not need a cooler, and thus it is easier to achieve lightweight design and low cost 
compared to when cooled type infrared cameras are applied; however, this camera’s 
long-distance surveillance capability is inferior to that of cooled type infrared cameras. 
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In existing infrared thermal imaging-based flame detection methods, flame candidate 
regions are extracted using fixed threshold values, and flame motion is analyzed for fire 
determination. Accordingly, the procedure for determining flame candidate regions from 
thermal images significantly affects the accuracy of the flame detection results and the amount 
of post-processing computation. Given that potential flame regions are expressed with high 
intensity thermal images, it is possible to detect flame regions simply by using a fixed 
threshold method. However, there exist elements that cause false detection, such as the steel 
structures, vehicle engines, roof of building and artificial lighting heated by reflected sunlight 
or surrounding environments. Also, the contrast and intensity of thermal images may vary 
depending on the characteristics of the camera used or the environments where it is installed. 
Therefore, to reduce false detection, thresholds for extracting flame regions must be 
adaptively set to the environment from which target images have been obtained. 

The present study is composed as follows. In Chapter 2, a thermal imaging fire surveillance 
algorithm to implement a smart fire surveillance system with a minimal false detection rate is 
described. This algorithm consists of three phases, as follows: selection of flame candidate 
blocks using flame thresholds adaptive to temporal conditions such as day or night, and 
weather conditions, along with center-of-gravity analysis; analysis of temporal texture 
correlation of flame candidate blocks; and statistical preliminary and final fire decisions. In 
Chapter 3, computer simulation results of test images using the proposed algorithm are 
presented. Finally, in Chapter 4, the conclusions of the present study are described. 

2. Thermal Imaging Fire Detection Algorithm 
 

 
 

Fig. 1. Functional diagram of fire detection algorithm 
 
A structural diagram of the thermal imaging fire detection algorithm proposed in the present 
study is shown in Fig. 1. The algorithm consists of selection of adaptive flame candidate 
blocks; analysis of temporal texture correlation of flame candidate blocks; and preliminary 
and final fire decisions. Input images were divided into 4x4 image blocks, and all operations 
were processed on a block-by-block basis. 
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2.1 Selection of Adaptive Flame Candidate Blocks 
To minimize the occurrence of non-flame elements in the early stage, the selection process of 
adaptive flame candidate blocks is divided into two phases of processing adaptive flame 
thresholds and analyzing the center of gravity, and these two phases are continuously 
conducted. As a first step, adaptive flame threshold processing is carried out, as follows.  
 
i) Adaptive Flame Threshold Processing 
 
Heat-source regions found in infrared thermal images are composed not only of potential 
flame regions but also elements that may cause false detection, such as reflected sunlight, 
vehicle engines, and other heating objects, as well as artificial lighting, such as traffic lights on 
the street. Existing fixed threshold-based selection methods of flame candidate blocks, 
however, have a limitation in that the intensity or contrast of input images may vary depending 
on the given surveillance environment, such as temporal conditions of day or night, and 
weather and local conditions, thereby causing false detection. To overcome this problem, a 
method of adaptively setting flame thresholds using the average intensity and standard 
deviation of input images was selectively applied. Given that the flame regions that need to be 
extracted have a higher intensity than the background, flame thresholds are adaptively set to 
the average intensity level of an input image using average intensity and standard deviation. 
Most pixels in the background have similar intensity levels close to the average value, while 
those in flame regions have very high-intensity levels due to their high thermal energy. Given 
these conditions, flame candidate blocks can be separated by setting a threshold larger than the 
sum of the average intensity and the standard deviation.  

This method, however, causes false detection when obtained images are dark, as in tunnels, 
underground spaces, or night surveillance environments without light sources, because 
non-flame elements, such as moving people and vehicles, are often mistaken for flame 
candidate regions. This is because in such cases the overall temperature of the image appears 
low, and thus the average intensity of the image becomes close to zero, while the standard 
deviation is also small due to the relatively large number of background pixels. As a result, 
false detections may occur, where people or vehicles are mistaken for flame regions. To 
overcome all the problems mentioned above, a new selection method of flame candidate 
blocks was proposed that uses an adaptive threshold that reflects the maximum pixel value of 
an input image in addition to the average intensity and the standard deviation. In thermal 
images, the pixels contained in flame regions always tend to have the maximum intensity level, 
and thus adaptive thresholds that reflect this nature may ensure that flame candidate blocks can 
be more accurately separated in various surveillance environments than is possible with 
existing methods.  

The proposed method of setting the adaptive thresholds is as follows. Here, two types of 
thresholds are used, the heat-source threshold 𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and the hot-source threshold 𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜, 
which separates hot-source regions. First, the heat-source threshold 𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒  is defined as 
shown in Eq. 1. In the equation, 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is the average intensity of an input image, and 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 is its 
standard deviation. The standard deviation is multiplied by two to separate heat-source regions 
with higher intensity than the background region. 
 

𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 + 2𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠     (1) 
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The hot-source threshold 𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜 is defined based on the maximum intensity of an input 

image, as shown in Eq. 2. 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is a value that is used for exception handling when the 
maximum intensity of the flame regions is lower. Simply put, when the maximum intensity of 
the input image is lower than 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is replaced by 𝐼𝐼𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌, the maximum intensity that 
can be achieved in the input image. 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 was experimentally optimized to 179, and 𝐼𝐼𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌, 
which represents the maximum intensity of the Y channel of the YCbCr color model, was set 
to 235. The 𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜 values determined above were reflected in determining the 
average intensity of image blocks and, as a result, heat-source and hot-source binary images 
were created. These two binary images were used later in the gravity center analysis of flame 
candidate regions.  
 

𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜 = �
0.5�𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 + 3𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠� + 0.5𝐼𝐼𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌   ∶ 𝑖𝑖𝑖𝑖 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 <  𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

0.5�𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 + 3𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠� + 0.5𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚   ∶ 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒            
         (2) 

 
ii) Center-of-gravity Analysis 
 
A center-of-gravity analysis of the flame candidate regions extracted based on adaptive flame 
thresholds is intended to use heat-source and hot-source binary images to rule out non-flame 
elements with high intensity, thereby minimizing the occurrence of false fire detections. When 
these two binary images indicate that the center of gravity of the heat-source region and that of 
the hot-source region coincide, the corresponding region is classified as a flame region. In 
contrast, when they differ, the region is classified as a non-flame region. The rationale behind 
this classification is that, in actual flame regions, the center of gravity of a heat-source region 
tends to coincide with that of a hot-source region. In non-flame objects, such as moving 
vehicles and excavator engines, however, each center of gravity is differently located. Fig. 2 
and Fig. 3 show that, in actual flame regions, the center of gravity of the heat-source region is 
almost identical to that of the hot-source region. In contrast, in the excavator engine, as a 
non-flame object, the centers of gravity do not coincide. 
 

 

 
   (Thermal Image)             (Heat-source region)            (Hot-source region) 

Fig. 2. Comparison between heat-source regions and hot-source regions in fire image 
 

  
    (Thermal Image)             (Heat-source region)            (Hot-source region) 
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Fig. 3. Comparison between heat-source regions and hot-source regions in non-fire image 
 

The coordinates of the heat-source and hot-source regions 𝑥̅𝑥 and 𝑦𝑦� can be estimated using 
Eq. 3. Here, I(x, y) is the binary image coordinates, and 𝑀𝑀00 is the number of pixels that 
constitute the flame region. Also, 𝑀𝑀10 and 𝑀𝑀01 are the sums of the x-coordinates and the 
y-coordinates of the pixels that constitute the flame region, respectively.  

 
  𝑥̅𝑥 = 𝑀𝑀10

𝑀𝑀00
,  𝑦𝑦� = 𝑀𝑀01

𝑀𝑀00
,𝑀𝑀𝑖𝑖𝑖𝑖 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗𝐼𝐼(𝑥𝑥,𝑦𝑦)𝑦𝑦𝑥𝑥       (3) 

 
The centers of gravity of the heat-source region and the hot-source region were calculated 

using Eq. 3, and the distance between each center of gravity DCOG was estimated using Eq. 4. 
Here,  𝑥̅𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 and 𝑦𝑦�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 are the coordinates of the heat-source region, while 𝑥̅𝑥𝐻𝐻𝐻𝐻𝐻𝐻 and 𝑦𝑦�𝐻𝐻𝐻𝐻𝐻𝐻 are 
the coordinates of the hot-source region.  
 

DCOG = �(𝑥̅𝑥𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑥̅𝑥𝐻𝐻𝐻𝐻𝐻𝐻)2 + (𝑦𝑦�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑦𝑦�𝐻𝐻𝐻𝐻𝐻𝐻)2                 (4) 
 

When the distance between the centers of gravity is smaller than the center-of-gravity 
threshold TH𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, the concerned region is classified as a flame region. In contrast, when it is 
larger than the threshold, or there are no hot-source region pixels available, the region is 
classified as a non-flame region. The center-of-gravity threshold TH𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was adaptively set to 
the size and shape of the flame regions, which were differently represented depending on the 
shooting position, e.g., from far or short distances. To this end, it was reflected that, in actual 
flame regions, the center of gravity of the heat-source region tended to be located within a 
specific radius of the center of gravity of the corresponding hot-source region. Accordingly, 
the threshold was adaptively set to ensure that any region could be classified as a flame region 
when the center of gravity of its hot-source region was located within a distance corresponding 
to the number of pixels defined from the center of gravity of its heat-source region. The 
estimation was performed as shown below. 
 

1) The minimum and maximum values of the x-axis and y-axis for the hot-source region, 
i.e., 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 are determined. 

 
2) Based on the minimum and maximum coordinates obtained, the reference distance 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 is calculated using Eq. 5. It is diagonal distance of virtual rectangular box 
surrounding hot-source region. 

 
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 = �(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)2              (5) 

 
3) The adaptive center-of-gravity threshold 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is estimated using Eq. 6. Here, α is 

the weighted value of the center-of-gravity threshold, and its optimal value was 
experimentally determined to be 0.1. A small alpha means that the two centers of 
gravity are in about the same position. As the alpha value increases more than 0.1, 
false alarm increases.  

 
𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = α𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟      (6) 
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2.2 Analysis of Temporal Texture Correlation 
A temporal texture correlation analysis of flame candidate blocks is a method that analyzes 
their dynamic characteristics, such as the spread and motion of flame. Such texture change is 
measured using the correlation and average intensity of the candidate blocks contained in 
adjacent images. Here, the degree of correlation between each candidate block is estimated 
using a mean absolute difference method, which requires a small amount of computation [1]. 
In the case of false detection elements, such as objects reflected by sunlight, the degree of 
correlation is found to be high because these elements do not move over time. In contrast, 
actual flame regions exhibit a low degree of correlation due to the spread of flame and 
wind-driven flame motions. To implement this correlation analysis, candidate blocks and 
expanded blocks were defined, and the correlation between the flame candidate blocks (red 
square symbols) and expanded blocks (green square symbols) was indicated in Fig. 4.  
 

 
Fig. 4.  Flame candidate blocks and expanded blocks 

 
The degree of correlation for the candidate block located at the center (𝐵𝐵𝐵𝐵𝑎𝑎) and for the 

expanded blocks (𝐵𝐵𝐵𝐵𝑏𝑏) can be defined as shown in Eq. 7 and Eq. 8, respectively. Here, i and j 
are the coordinates of the blocks, while x and y are the pixel coordinates of the input image.  
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 are the intensity of the current image and the previous image, respectively. 
 

𝐵𝐵𝐵𝐵𝑎𝑎(𝑖𝑖, 𝑗𝑗) = 1
16
∑ ∑ �𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) − 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦)�4𝑗𝑗+3

𝑥𝑥=4𝑗𝑗
4𝑖𝑖+3
𝑦𝑦=4𝑖𝑖    (7) 

 
 𝐵𝐵𝐵𝐵𝑏𝑏(𝑖𝑖, 𝑗𝑗) = 1

9 ∙ 16
∑ ∑ �𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) − 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦)�4(𝑗𝑗+1)

𝑥𝑥=4(𝑗𝑗−1)
4(𝑖𝑖+1)
𝑦𝑦=4(𝑖𝑖−1)    (8) 

 
The amount of texture change in the candidate blocks is calculated using Eq. 9, and the 

average texture change for a specific interval is calculated using Eq. 10. In the cases in which 
the amount of texture change is smaller in the candidate blocks than in the expanded blocks, 
i.e., the mean absolute difference of the candidate blocks is smaller than that of the expanded 
blocks, the right-hand side of the equation becomes negative, and thus it is substituted by zero. 
Here, i and j are the coordinates of the candidate blocks, n is the sequential number of texture 
change, and N is set to six for low-pass filtering during about one-second duration.  
 

 BV(i, j) = 𝐵𝐵𝐵𝐵𝑎𝑎(i, j) − 𝐵𝐵𝐵𝐵𝑏𝑏(𝑖𝑖, 𝑗𝑗)      (9) 
 

MBV(i, j) = 1
𝑁𝑁
∑ 𝐵𝐵𝐵𝐵(𝑖𝑖, 𝑗𝑗, 𝑛𝑛)𝑁𝑁
𝑛𝑛=1                (10) 
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2.3 Preliminary Decision Adaptive to Global Errors in Input Images 
The amount of average texture change in flame candidate blocks for a specific interval 
represents the spread and motion of flame. When the figure exceeds a certain reference value, 
the concerned region is preliminarily determined as a potential fire region, and data 
accumulated over time will be used for final fire decision. When this approach is applied to 
actual systems, however, the amount of texture change can be affected by the global error 
elements within input images that are caused by camera shaking arising from wind or the 
vibration of instruments. This may lead to a higher possibility of false detection. To overcome 
this problem, preliminary fire thresholds adaptive to the motion pixel ratio of input images are 
applied. 

The adaptive preliminary fire threshold 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝 is defined as follows. A difference image 
between the current image and the previous image is created, and the motion pixel ratio is 
estimated using N, the number of motion pixels; accordingly, the adaptive threshold is 
determined. Here, X and Y are the horizontal and vertical dimensions of the image, and motion 
pixels are defined as those that exhibit an intensity value difference of three or more. The 
adaptive preliminary fire threshold is defined as shown in Eq. 11, and K is experimentally 
optimized to be five. It may vary between one and five. That reflects the amount of camera 
shaking caused by wind. As the K value decreases five to one, false alarm increases. 
 

𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝 = 𝐾𝐾 � 𝑁𝑁
𝑌𝑌 ∙ 𝑋𝑋

�    (11) 
 

The preliminary fire decision value is determined based on the adaptive preliminary fire 
threshold, as shown in Eq. 12. Here, i and j are the coordinates of the candidate blocks. The 
resultant figures accumulated over a specific period are used for the final fire decision. 
 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖, 𝑗𝑗) = �1 ∶ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖, 𝑗𝑗) > 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝     
0 ∶ 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                   

    (12) 

 

2.4 Final Fire Decision 

In the final fire decision phase, the degree of correlation, average intensity, and preliminary 
decision value of flame candidate blocks are averaged for a given interval. When it is verified 
that the final decision conditions have been met, the concerned flame candidate block is 
confirmed as a fire. Here, the final decision conditions reflect flame and non-flame 
characteristics and phenomena, as follows. The characteristics of flame and artificial 
heat-source objects as false detection elements are compared and summarized in Table 1. 
 

Table 1. Comparison of characteristics of flame and non-flame objects in thermal images 

Division Degree of texture 
correlation 

Average 
intensity Examples 

Flame Low High Flame 
Dynamic heat-source 
objects (non-flame) Low Low Moving vehicles, excavators in 

operation, etc. 

Static heat-source 
objects (non-flame) High High 

Chimneys, streetlights, heating 
apparatuses, and sunlight reflection 
(rocks, building walls, roofs, etc.) 
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Flame and non-flame objects are characterized as follows. Dynamic heat-source objects, 

such as moving vehicles, move faster than flame can spread, and thus the intensity of the 
corresponding candidate blocks sharply decreases over time. Also, temporal correlation is low 
due to position change. Meanwhile, static heat-source objects, such as heating apparatuses or 
rocks, buildings, and plant chimneys that may reflect sunlight, exhibit a high intensity and thus 
have a high chance of being selected as candidate blocks; however, these objects are immobile, 
and thus the high intensity is maintained over time, and the temporal correlation is found to be 
high because there is no position change. In contrast, flame candidate blocks exhibit a low 
degree of temporal correlation, while the intensity is maintained at high over time due to the 
motion and spread of flame, resulting in position change. In consideration of these 
characteristics, the degree of correlation, intensity, and preliminary decision value of 
candidate blocks are averaged for a given interval, and the results are used for final fire 
decision.  
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖, 𝑗𝑗) = ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖, 𝑗𝑗,𝑚𝑚)𝑀𝑀
𝑚𝑚=1     (13) 

 
𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑗𝑗) = 1

𝑁𝑁
∑ 𝐵𝐵𝐵𝐵𝑎𝑎(𝑖𝑖, 𝑗𝑗,𝑛𝑛)𝑁𝑁
𝑛𝑛=1  `   (14) 

 
𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑗𝑗) = 1

𝑁𝑁
∑ 𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑗𝑗,𝑛𝑛)𝑁𝑁
𝑛𝑛=1     (15) 

 
Here, i and j are the coordinates of the blocks, while 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 are the degree of 
correlation and intensity averaged for a given interval, respectively. The number of elements 
within a given interval, N, was set to 21, which corresponds to the time taken to conduct three 
preliminary decisions. 𝐵𝐵𝐵𝐵𝑎𝑎 is the mean absolute difference of the blocks, and 𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏 is the 
average intensity of the blocks. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the sum of the preliminary fire decision values for 
a given interval, and M was set to 10. Based on the combination of the three elements 
described above, a conditional expression for the final decision was formulated, as shown in 
Eq. 16.  
 

�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 2� & �𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝� & �𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 𝑇𝑇𝑇𝑇ℎ𝑜𝑜𝑜𝑜�  `(16) 

3. Computer Simulation and Results 
To verify the function and performance of the proposed thermal imaging fire detection 
algorithm, a computer simulation was conducted on ten test videos. Each video used in the 
simulation is a YCbCr color model-based thermal image recorded at 30 frames per second 
with a resolution of 720x480. A total of ten test videos are summarized in Table 2. Among 
them, seven videos contain actual flame images, while three contain false detection elements, 
such as sunlight reflection, artificial lighting, vehicles, and excavators. The average recording 
time is 30 seconds. The sampling interval for testing the proposed algorithm was set to 0.2 
seconds. The computer simulation results are presented in Fig. 5. Here, regions confirmed as 
fire are marked with red circles. 
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Table 2. Type and properties of test videos 

No. Properties of test videos 

Video 1* Video of a fire from a short distance that contains objects reflecting sunlight (Fig. 5-a) 

Video 2* Video of a fire from a far distance that contains screen shaking and multiple objects 
reflecting sunlight (Fig. 5-b) 

Video 3* Video of a fire from a far distance that contains a forest fire with screen shaking (Fig. 
5-c) 

Video 4 Video that contains a building reflecting sunlight (Fig. 5-d) 

Video 5 Video that contains the headlights of a moving vehicle in tunnel (Fig. 5-e) 

Video 6* Video from a short distance that contains lighting and torches in tunnel (Fig. 5-f) 

Video 7* Video of a fire between buildings from a far distance (Fig. 5-g) 

Video 8* Video of a fire on the plain from a far distance (Fig. 5-h) 

Video 9 Video contains an excavator in operation (Fig. 5-i) 

Video 10* Video of a fire in a town from a short distance (Fig. 5-j) 
(* video that contains fire scenes) 
 

Fire detection performance measured for each test video is summarized in Table 3. First, a 
preliminary fire decision was conducted three times on input images fed at an interval of 0.2 
seconds. Following that, each input image was processed, and decided with the final decision 
conditions.  
 

Table 3. Performance test results of proposed algorithm 

Video No. 
No. of fire 
decision 

(every 0.2s) 

No. of fire decision 
on image with 

flames 

No. of fire  
alarm 

No. of false 
alarm 

Video 1* 123 123 123 0 
Video 2* 123 123 116 0 
Video 3* 123 123 103 0 
Video 4 123 0 0 0 
Video 5 123 0 0 0 

Video 6* 123 123 123 0 
Video 7* 123 60 43 0 
Video 8* 123 123 121 0 
Video 9 123 0 0 0 

Video 10* 123 123 123 0 
Total 1230 798 752 0 

Total Correct & False Decision Ratio (%) 94.24 0 
(* video that contains fire scenes) 

 
The computer simulation results of the test videos showed that the overall decision accuracy 

of the proposed algorithm was 94.24% fire alarm ratio, without false alarms. The correct fire 
decision rate was calculated using Eq. 17.  
 

No.  of fire alarm
No.  of fire decision with flame

× 100(%)    (17) 
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(a)                                                             (b) 

  
(c)                                                             (d) 

  
(e)                                                                   (f) 

  
(g)                                                                  (h) 

  
(i)                                                                    (j) 

 
Fig. 5.  Computer simulation results 
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As described in Table 2, the seven test videos (video 1,2,3,6,7,8,10) have fire scenes and 
scenes causing false alarms. And three videos (video 4,5,9) have scenes causing false alarms 
without fire scenes. Video 1 has fire and rocks reflecting sunlight. In videos 2 and 3, there are 
fire, camera shaking and objects reflecting sunlight. Video 4 has building reflecting sunlight. 
Objects reflecting sunlight, and camera shaking may cause false fire detection. Video 5 has 
headlights of moving cars in tunnel. High-brightness moving headlights may cause false fire 
detection. In video 6, it contains lighting and person shaking torches in tunnel. 
High-brightness lighting and moving person may cause false fire detection. In vedeos 7, 8 and 
10, there are fire and high-brightness backgound or building. Video 9 has moving excavator. 
High temperture moving engine may cause false fire detection. 

As a result of the simulation, the seven fire videos (video 1,2,3,6,7,8,10)  generated 
correctly fire alarms without false alarms, and three non-fire videos (video 4,5,9) did not 
generated fire alarms and false alarms. In videos 2 and 3, the camera shaking, which resembled 
the dynamic characteristics of flame, was likely to cause false detection, but the application of 
the preliminary threshold adaptive to the global error element caused by the camera shaking 
ruled out the possibility of false detection. In videos 5 and 9, the vehicles and the excavator 
were selected as flame candidate regions because of their high engine heat, but the vehicles 
were ruled out due to the low average intensity. In the case of the excavator in operation, its 
engine moved in a way similar to that of flame, but the difference in the center of gravity 
between the heat-source region and hot-source region was significant. In this way, false 
detection could be avoided. In videos 1, 3, and 4, sunlight-reflecting objects, such as rocks, 
houses, and artificial structures, were selected as candidate blocks because their intensity 
levels were very high, but the temporal correlation analysis successfully ruled out the 
possibility of false detection. 

Compared with the performance of the previous algorithm [1], The previous algorithm was 
found to be inferior in terms of false detection performance, one of the key performance 
objectives of the proposed algorithm. The previous algorithm resulted in some false detections 
in Test Videos 2, 3, and 9, while the proposed algorithm demonstrated improved detection 
performance with zero false detection rate. In the previous algorithm, fire decision was carried 
out solely based on the fixed threshold-based candidate block selection and the average degree 
of correlation measured from input images fed at an interval of 0.5 seconds and focused in 
real-time early detection at video sequence level. This algorithm was mounted on an image 
processing board, and its video sequence level detection and false detection performance were 
evaluated at an interval of 3 seconds. The very high fire alarm ratio was checked in video 
sequence level, but some false alarms were occurred, in addition sometimes correct and false 
alarms simutaneously occurred in the same image.  In the field system, false alarms are very 
severe problem to be resolved. 

4. Conclusion 
In the present study, a thermal imaging fire detection algorithm was proposed that was 
designed to be adaptive to the properties of input images and so minimize the false detection 
rate. First, adaptive flame thresholds were determined based on the average intensity, standard 
deviation, and maximum intensity of input images, and the centers of gravity of the 
heat-source and hot-source regions were compared. By doing so, non-flame elements in the 
early stage could be effectively ruled out. Following that, during the preliminary decision 
based on correlation analysis, in which texture change of flame candidate blocks in adjacent 
images was quantified, the thresholds were adaptively set to the motion pixel ratio of input 
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images to remove false detection elements caused by global errors, such as camera shaking. In 
the final fire decision phase, the cumulative preliminary decision values, average intensity 
change, and average degree of correlation of the flame candidate blocks for a given interval 
were assessed. When these three decision conditions were met, the concerned candidate block 
was confirmed as a fire. To verify the performance of the proposed algorithm, seven videos 
that contained both flame and non-flame elements and three videos that contained only 
non-flame elements were subjected to computer simulation. The computer simulation results 
showed that the fire detection accuracy of the proposed algorithm was 94.24%, without false 
detection, indicating its conformity with the target performance. Also, the proposed algorithm 
completely ruled out the possibility of false detection, demonstrating significantly improved 
detection performance and practicality compared to the existing algorithm. A future study will 
focus on converting the algorithm into one that can be embedded in an image processing board 
and on implementing it while verifying its real-time processing and detection performance. 
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