• Title/Summary/Keyword: fixed point theorems

Search Result 436, Processing Time 0.048 seconds

FIXED POINT THEOREMS IN S-METRIC SPACES

  • Kim, Jong Kyu;Sedghi, Shaban;Gholidahneh, A.;Rezaee, M. Mahdi
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.677-684
    • /
    • 2016
  • In this paper, the notion of S-metric spaces will be introduced. We present some fixed point theorems for two maps on complete S-metric spaces and an illustrative example is given for the single-valued case. By using the similar method as in [4], a common fixed point theorem for two single-valued mappings is obtained in S-metric spaces.

EXTENSIONS OF BANACH'S AND KANNAN'S RESULTS IN FUZZY METRIC SPACES

  • Choudhur, Binayak S.;Das, Krishnapada;Das, Pradyut
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.265-277
    • /
    • 2012
  • In this paper we establish two common fixed point theorems in fuzzy metric spaces. These theorems are generalisations of the Banach contraction mapping principle and the Kannan's fixed point theorem respectively in fuzzy metric spaces. Our result is also supported by examples.

FIXED POINT THEOREMS FOR THE MODIFIED SIMULATION FUNCTION AND APPLICATIONS TO FRACTIONAL ECONOMICS SYSTEMS

  • Nashine, Hemant Kumar;Ibrahim, Rabha W.;Cho, Yeol Je;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.137-155
    • /
    • 2021
  • In this paper, first, we prove some common fixed point theorems for the generalized contraction condition under newly defined modified simulation function which generalize and include many results in the literature. Second, we give two numerical examples with graphical representations for verifying the proposed results. Third, we discuss and study a set of common fixed point theorems for two pairs (finite families) of self-mappings. Finally, we give some applications of our results in discrete and functional fractional economic systems.

COMMON FIXED POINT THEOREMS UNDER GENERALIZED (ψ - ϕ)-WEAK CONTRACTIONS IN S-METRIC SPACES WITH APPLICATIONS

  • Saluja, G.S.;Kim, J.K.;Lim, W.H.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.13-33
    • /
    • 2021
  • The aim of this paper is to establish common fixed point theorems under generalized (ψ - ϕ)-weak contractions in the setting of complete S-metric spaces and we support our result by some examples. Also an application of our results, we obtain some fixed point theorems of integral type. Our results extend Theorem 2.1 and 2.2 of Doric [5], Theorem 2.1 of Dutta and Choudhury [6], and many other several results from the existing literature.

A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES

  • Park, Seh-Ie
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.803-829
    • /
    • 1998
  • We give general fixed point theorems for compact multimaps in the "better" admissible class $B^{K}$ defined on admissible convex subsets (in the sense of Klee) of a topological vector space not necessarily locally convex. Those theorems are used to obtain results for $\Phi$-condensing maps. Our new theorems subsume more than seventy known or possible particular forms, and generalize them in terms of the involving spaces and the multimaps as well. Further topics closely related to our new theorems are discussed and some related problems are given in the last section.n.

  • PDF

ELEMENTS OF THE KKM THEORY ON CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.1-27
    • /
    • 2008
  • We introduce a new concept of convex spaces and a multimap class K having certain KKM property. From a basic KKM type theorem for a K-map defined on an convex space without any topology, we deduce ten equivalent formulations of the theorem. As applications of the equivalents, in the frame of convex topological spaces, we obtain Fan-Browder type fixed point theorems, almost fixed point theorems for multimaps, mutual relations between the map classes K and B, variational inequalities, the von Neumann type minimax theorems, and the Nash equilibrium theorems.

COUPLED FIXED POINT THEOREMS WITH APPLICATIONS

  • Chang, S.S.;Cho, Y.J.;Huang, N.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.575-585
    • /
    • 1996
  • Recently, existence theorems of coupled fixed points for mixed monotone operators have been considered by several authors (see [1]-[3], [6]). In this paper, we are continuously going to study the existence problems of coupled fixed points for two more general classes of mixed monotone operators. As an application, we utilize our main results to show thee existence of coupled fixed points for a class of non-linear integral equations.

  • PDF

BOUNDARY CONTROLLABILITY OF ABSTRACT INTEGRODIFFERENTIAL SYSTEMS

  • Balachandran, K.;Leelamani, A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.33-45
    • /
    • 2003
  • In this paper we establish a set of sufficient conditions for the boundary controllability of nonlinear integrodifferential systems and Sobolev type integrodifferential systems in Banach spaces by using fixed point theorems.

  • PDF

Generalized Common Fixed Point Theorems on Menger PM-spaces

  • Lee, Byung-Soo;Yang, Kyu-Han
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.228-231
    • /
    • 2000
  • More generalized common fixed point theorems for a sequence of fuzzy mappings to the nonexpansive case on Menger probabilistic metric spaces, which generalize recent results of Lee et al.[13], are obtained.

  • PDF