Generalized Common Fixed Point Theorems on Menger PM-spaces

Byung-Soo Lee and Kyu-Han Yang

Department of Mathematics Kyungsung University Pusan 608-736, Korea

ABSTRACT

More generalized common fixed point theorems for a sequence of fuzzy mappings to the nonexpansive case on Menger probabilistic metric spaces, which generalize recent results of Lee et al.[13], are obtained.

1. Introduction

There have been many results on fixed point theorems for fuzzy mappings, multi-valued mappings and single-valued mappings on probabilistic metric spaces including metric spaces, considered by Bose *et al.* [1], Butnariu [2], Chang *et al.* [4-6], Hadzic [8], Heilpern [9], Lee *et al.* [10-13], and others [3,7,17-19].

In 1996, Lee *et al.* [12] obtained a common fixed point theorem for a sequence of fuzzy mappings to the nonexpansive case on Menger probabilistic metric spaces under some equality-type condition.

In this paper we obtain more generalized common fixed theorems for a sequence of fuzzy mappings to the nonexpansive case on Menger probabilistic metric spaces, which generalize and improve the previous results of Lee *et al.* [12].

2. Preliminaries

In this section, we recall some topological properties and others of Menger probabilistic metric spaces in [14-16].

Definition 2.1 A probabilistic metric space (in short, a PM-space) is an ordered pair (E, \mathcal{F}) , where E is a nonempty set and \mathcal{F} is a mapping from $E \times E$ into D^+ , where D^+ is the set of all distribution functions. We denote the distribution function $\mathcal{F}(x, y)$ by $F_{x, y}$ for each $x, y \in E$. The function $F_{x, y}$ is assumed to satisfy the following conditions;

(PM-1) $F_{x,y}(t) = 1$ for all t > 0 if and only if x = y, (PM-2) $F_{x,y}(0) = 0$,

(PM-3) $F_{x,y}(t) = F_{y,x}(t)$ for all $t \in \mathbb{R}$,

(PM-4) if $F_{x,y}(t_1)=1$ and $F_{y,z}(t_2)=1$, then $F_{x,z}(t_1+t_2)=1$.

Definition 2.2 A mapping $\Delta : [0,1] \times [0,1] \rightarrow [0,1]$ is called a *t*-norm if it satisfies the following conditions; for any $a, b, c, d \in [0,1]$,

(T-1) $\Delta(a, 1) = a$,

(T-2) $\Delta(a, b) = \Delta(b, a)$,

(T-3) $\Delta(c, d) \ge \Delta(a, b)$ for $c \ge a$ and $d \ge b$, (T-4) $\Delta(\Delta(a, b), c) = \Delta(a, \Delta(b, c))$.

Definition 2.3 A Menger PM-space is a triplet (E, \mathcal{F}, Δ) , where (E, \mathcal{F}) is a PM-space and Δ is a t-norm satisfying the following triangle inequality

 $F_{x,y}(t_1+t_2) \ge \Delta(F_{x,y}(t_1), F_{y,z}(t_2))$ for all $x, y, z \le E$ and $t_1, t_2 \ge 0$.

Schweizer and Sklar have proved that if (E, \mathcal{F}, Δ) is a Menger PM-space with a continuous t-norm Δ , then (E, \mathcal{F}, Δ) is a Hausdorff topological space in the topology τ having

$$\beta = \{N_p(\varepsilon, \lambda) : p \in E, \varepsilon, \lambda > 0\}$$

as a basis, where

$$N_{\nu}(\varepsilon, \lambda) = \{x \in E : F_{x,\nu}(\varepsilon) > 1 - \lambda\}.$$

Definition 2.4 Let (E, \mathcal{F}, Δ) be a Menger PM-space with a continuous t-norm Δ . Let $(x_n)_{n=1}^{\infty}$ be any sequence in E.

 $(x_n)_{n=1}^{\infty}$ is said to be τ -convergent to $x \in E$ (we write $x_n \stackrel{\tau}{\to} x$), if for any given $\varepsilon > 0$ and $\lambda > 0$, there exists a positive integer $N = N(\varepsilon, \lambda)$ such that $F_{x_n,x}(\varepsilon) > 1 - \lambda$ whenever $n \ge N$.

 $(x_n)_{n=1}^{\infty} \subset E$ is called a τ -Cauchy sequence if for any $\varepsilon > 0$ and $\lambda > 0$, there exists a positive integer $N = N(\varepsilon, \lambda)$ such that $F_{x_n,x_m}(\varepsilon) > 1 - \lambda$, whenever $n, m \ge N$.

A Menger PM-space (E, \mathcal{F}, Δ) is said to be τ -complete if each τ -Cauchy sequence in E is τ -convergent to some point in E.

Definition 2.5 A function $\varphi:[0,+\infty) \rightarrow [0,+\infty)$ is said to satisfy the condition (Φ) if it is strictly increasing, left-continuous, $\varphi(0)=0$, $\lim_{t\to+\infty} \varphi(t)=+\infty$ and $\sum_{n=0}^{\infty} \varphi^n(t)<+\infty$ for all t>0, where $\varphi^n(t)$ is the *n*-th iterative of $\varphi(t)$.

Lemma 2.6 [6,14] Let a function $\varphi: [0, +\infty) \rightarrow [0, +\infty)$ satisfy the condition (Φ) , then a function

 $\psi: [0, +\infty) \rightarrow [0, +\infty)$ defined by

(2.1)
$$\psi(t) = \begin{cases} 0, & t = 0, \\ \inf\{s > 0 : \varphi(s) > t\}, & t > 0. \end{cases}$$

is continuous, nondecreasing, and satisfies the following assertions;

- (i) $\varphi(t) < t$ for all t > 0,
- (ii) $\varphi(\psi(t)) \le t$ and $\psi(\varphi(t)) = t$ for all $t \ge 0$,
- (iii) $\psi(t) \ge t$ for all $t \ge 0$,
- (iv) $\lim_{t\to\infty} \psi^n(t) = +\infty$ for all t>0.

Definition 2.7 A t-norm Δ is called h-type if a family of functions $(\Delta^m(t))_{m=1}^{\infty}$ is equicontinuous at t=1, where

$$\Delta^{1}(t)=\Delta(t, t), \Delta^{m+1}(t)=\Delta(t, \Delta^{m}(t)), m=1, 2, \dots, t \in [0, 1].$$

Obviously, Δ is an h-type t-norm if and only if for any $\lambda \in (0, 1)$, there exists $\delta(\lambda) \in (0, 1)$ such that Δ^m (t)>1 $-\lambda$ for all $m \in \mathbb{N}$, the set of natural numbers, when $t > \delta(\lambda)$.

Lemma 2.8 [6] Let (E, \mathcal{F}, Δ) be a Menger PMspace with an h-type t-norm Δ . If a sequence $(x_n)_{n=0}^{\infty}$ in Esatisfies the following condition;

$$F_{x_0,x_{n+1}}(t) \ge F_{x_0,x_1}(\psi^n(t))t \ge 0,$$

where ψ is a function defined by (2.1), then $(x_n)_{n=0}^{\infty}$ is a τ -Cauchy sequence in E.

Lemma 2.9 A sequence $(x_n)_{n=0}^{\infty}$ converges to x in (E, \mathcal{F}, Δ) if and only if the sequence $(F_{x_m,x})_{n=1}^{\infty}$ converges to $F_{xx} \in D^+$.

III. Common fixed point theorems

Throughout this section, (E, \mathcal{F}, Δ) is a τ -complete Menger PM-space with a left-continuous t-norm Δ of h-type. We always assume that $\hat{\Omega}$ is a family of all fuzzy sets A in E whose each α -level set $(A)_{\alpha} = \{x \in A \mid x \in A \}$ $E \mid A(x) \ge \alpha$ for $\alpha \in (0, 1]$ is a nonempty τ -closed set in E. We define a mapping $\widehat{\mathcal{F}}$ on $\widehat{\Omega} \times \widehat{\Omega} \rightarrow D^+$ as follows (we also denote $\widehat{\mathcal{G}}(A, B)$ by $\widehat{F}_{A,B}$ and the value of $\widehat{\mathcal{G}}(A, B)$ at $t \in \mathbb{R}$ by $F_{A,B}(t)$;

$$\hat{\tilde{F}}_{A,B}(t) = \inf_{\substack{\alpha \in (0,1] \\ \tilde{F}_{\{x\},B}(t) = \inf_{\alpha \in (0,1]} F_{x,(B)\alpha}(t), \ t \geq 0, \ A, \ B \subseteq \hat{\Omega}, \text{ and }$$

where

$$F_{(A)_{\alpha},(B)_{\alpha}}(t) = \sup_{s < t} \Delta(\inf_{\alpha \in (A)_{\alpha}} \sup_{b \in (B)_{\alpha}} F_{a,b}(s), \inf_{b \in (B)_{\alpha}} \sup_{\alpha \in (A)_{\alpha}}$$

 $F_{a,b}(s)$), and

$$F_{x,(B)\alpha}(t) = \sup_{y \in (B)\alpha} F_{x,y}(t), \ t \ge 0 \text{ for } \alpha \in [0, 1].$$

The last equality is called the probabilistic distance between a point xand a set $(B)_{\alpha}$. It is easily shown that $(\hat{\Omega}, \hat{\beta}, \Delta)$ is a Menger PM-space. For $A, B \in \hat{\Omega}$, $A \subseteq A$ B means $A(x) \le B(x)$ for $x \in E$, and $\{x\} \subseteq Tx$ or (Tx)(x)=1 means that x is a fixed point of a fuzzy mapping T from E to $\hat{\Omega}$

Proposition 3.1 Let A and B be elements of $\hat{\Omega}$ Assume that the 1-level set $(B)_1$ of the fuzzy set B is compact. Then for any $\{x\} \subseteq A$, there exists $\{y\} \subseteq B$ such that $F_{x,y}(t) \ge \hat{F}_{A,B}(t), t \ge 0.$

Proof.

$$\begin{split} & \bigwedge_{\alpha \in \{0,1\}} F_{(A)\alpha,(B)\alpha}(t) \\ &= \inf_{\alpha \in \{0,1\}} F_{(A)\alpha,(B)\alpha}(t) \\ &\leq F_{(A)_1,(B)_1}(t) \\ &= \sup_{s < t} \Delta \left(\inf_{a \in (A)_1} \sup_{b \in (B)_1} F_{a,b}(s), \inf_{b \in (B)_1} \sup_{a \in (A)_1} F_{a,b}(s) \right) \\ &\leq \sup_{s < t} \left(\inf_{a \in (A)_1} \sup_{b \in (B)_1} F_{a,b}(s) \right) \\ &\leq \sup_{b \in (B)_1} F_{x,b}(t) \end{split}$$

Putting $k = \sup_{b \in (B)_1} F_{x,b}(t), t \ge 0$, we obtain a sequence $(y_n)_{n=1}^{\infty}$ converging to $y \in (B)_1$ such that $k-1/n < F_{x,y_n}(t)$ $\leq k$. Letting $n \rightarrow \infty$, we have $k = F_{x,y}(t)$, $t \geq 0$, i.e.,

$$\sup_{b \in (R)_1} F_{x,b}(t) = F_{x,y}(t), \ t \ge 0.$$

This completes the proof.

Proposition 3.2 [13] Let A and B in $\hat{\Omega}$. Then the following hold;

(i) $\hat{F}_{\{x\},A}(t)=1$, t>0 only if $\{x\}\subseteq A$.

(ii) $F_{x,(A)\alpha}(t) \ge \hat{F}_{(x),A}(t), t \ge 0.$ (iii) If $\{x\} \subseteq A$, then $\hat{F}_{(x),B}(t) \ge \hat{F}_{A,B}(t), t \ge 0.$

Proposition 3.3 Let $B \subseteq \hat{\Omega}$ and $\{y\} \subseteq B$. Then for $\{x\} \subseteq \hat{\Omega}$,

$$\hat{F}_{\{x\},B}(t) \ge F_{x,y}(t), \ t \ge 0.$$

Proof. For any
$$\alpha \in (0, 1]$$
 and $\{y\} \subseteq B$, $F_{x,(B)\alpha}(t) = \sup_{z \in (B)\alpha} F_{x,z}(t)$ $\geq F_{x,y}(t), t \geq 0$.

Hence we have

$$\hat{F}_{\{x\},B}(t) = \inf_{\alpha \in \{0,1\}} F_{x,(B)\alpha}(t)$$

$$\geq F_{x,y}(t), t \geq 0.$$

Now we introduce the main theorem of this paper.

Theorem 3.4 Let $(T_i)_{i=1}^{\infty}: (E, \mathcal{F}, \Delta) \rightarrow (\hat{\Omega}, \hat{\mathcal{F}}, \Delta)$ be a sequence of fuzzy mappings and a function $\varphi: [0, +\infty) \rightarrow [0, +\infty)$ satisfy the condition (Φ) . Assume that the 1-level set $(B)_1$ of the fuzzy set B is compact. Suppose that for any $x, y \in E$,

$$\hat{F}_{T_{x}, T_{y}}(\varphi(t)) \ge \min\{F_{x, y}(t), \hat{F}_{\{x\}, T_{x}}(t), \hat{F}_{\{y\}, T_{y}}(t)\}, t \ge 0.$$

Then there exists an $x_* \in E$ such that

$$\{x_*\}\subset T_ix_*,\ i\in \mathbb{N}.$$

Proof. Define a function $\psi: [0, +\infty) \rightarrow [0, +\infty)$ by

$$\psi(t) = \begin{cases} 0, & t = 0, \\ \inf\{s > 0 : \varphi(s) > t\}, & t > 0. \end{cases}$$

Then by Proposition 3.1, for any given $x_0 \in E$ and any $\{x_1\} \subseteq T_1 x_0$, there exists $\{x_2\} \subseteq T_2 x_1$ such that

$$F_{x_{1},x_{2}}(\varphi(\psi(t)))$$

$$\geq \hat{F}_{T_{1}x_{0},T_{2}x_{1}}(\varphi(\psi(t)))$$

$$\geq \min\{F_{x_{0},x_{1}}(\psi(t)), \hat{F}_{(x_{0}),T_{1}x_{0}}(\psi(t)), \hat{F}_{(x_{1}),T_{2}x_{1}}(\psi(t))\}.$$

Since F_{x_1,x_2} is nondecreasing, we obtain $F_{x_1,x_2}(t) \ge F_{x_1,x_2}(\varphi(\psi(t)))$ from Lemma 2.6 (ii). Thus we have

$$F_{x_{1},x_{2}}(t) \ge \min\{F_{x_{0},x_{1}}(\psi(t)), \stackrel{\wedge}{F}_{\{x_{0}\},T_{1}x_{0}}(\psi(t)), \\ \stackrel{\wedge}{F}_{\{x_{1}\},T_{2}x_{1}}(\psi(t))\} \\ \ge \min\{F_{x_{0},x_{1}}(\psi(t)), F_{x_{1},x_{2}}(\psi(t))\},$$

from the definition of the probabilistic distance between a point and a set and Proposition 3.3.

Since $F_{x_1,x_2}(t) \ge \min\{F_{x_0,x_1}(\psi(t)), F_{x_1,x_2}(\psi^n(t))\}\$ for all $m \in N$ from Lemma 2.6 (iii), letting $m \to \infty$ we have

$$F_{x_1,x_2}(t) \ge F_{x_0,x_1}(\psi(t)), t \ge 0.$$

Similarly, there exists $\{x_3\} \subseteq T_3x_2$ such that

$$F_{x_2,x_3}(t) \ge F_{x_1,x_2}(\psi(t)).$$

Continuing this process, we have a sequence $(x_n)_{n=0}^{\infty}$ such that

(i)
$$\{x_n\} \subseteq T_n x_{n-1}$$
,

(ii)
$$F_{x_n, x_{n+1}}(t) \ge F_{x_{n+1}, x_n}(\psi(t)), t \ge 0.$$

Hence we have

$$F_{x_n,x_{n+1}}(t) \ge F_{x_{n-1},x_n}(\psi(t)) \ge \cdots \ge F_{x_0,x_1}(\psi^n(t)), \ t \ge 0.$$

By Lemma 2.8., $(x_n)_{n=0}^{\infty}$ is a τ -Cauchy sequence in E. By the completeness of (E, \mathcal{F}, Δ) , there exists an $x_* \in E$ such that $x_n \stackrel{\tau}{\longrightarrow} x_*$.

Next, we prove that x_* satisfies $(T_i x_*)(x_*)=1$ for all $i \in \mathbb{N}$, i.e., $\{x_*\}$ is a common fixed point of $(T_i)_{i=1}^{\infty}$. In fact, for $\{x_{n+1}\} \subset T_{n+1} x_n$, we have $\{z_i\} \subset T_i x_*$ for each fixed $i \in \mathbb{N}$ such that

$$\begin{split} &F_{x_{n+1},z_{l}}(t) \\ &\geq \hat{F}_{T_{n+1}x_{n},T_{l},x_{\bullet}}(t) \\ &\geq \min\{F_{x_{n},x_{\bullet}}(\psi(t)), \ \hat{F}_{\{x_{n}\},T_{n+1}x_{n}}(\psi(t)), \ \hat{F}_{\{x_{\bullet}\},T_{l},x_{\bullet}}(\psi(t))\} \\ &\geq \min\{F_{x_{n},x_{\bullet}}(\psi(t)), \ F_{x_{n},x_{n+1}}(\psi(t)), \ \hat{F}_{\{x_{\bullet}\},T_{l},x_{\bullet}}(\psi(t))\} \\ &\geq \min\{F_{x_{n},x_{\bullet}}(\psi(t)), \ F_{x_{0},x_{1}}(\psi^{n}(t)), \ \hat{F}_{\{x_{\bullet}\},T_{l},x_{\bullet}}(\psi(t))\}. \end{split}$$

Taking limit inferior in (3.1) we have by Lemma 2.6 and Lemma 2.9

(3.2)
$$\lim_{n \to \infty} F_{x_{n+1}, z_i}(t) \ge \hat{F}_{\{x_*\}, T_i x_*}(\psi(t)).$$

On the other hand,

$$\hat{F}_{x_{*}, T_{i}x_{*}}(\psi(t)) \ge F_{x_{*}, z_{i}}(\psi(t))
\ge \Delta \{F_{x_{*}, x_{n+1}}(\delta), F_{x_{n+1}, z_{i}}(\psi(t) - \delta)\}, \delta > 0.$$

Taking limit superior we have

$$\hat{F}_{x_*, T_i x_*}(\psi(t)) \ge \overline{\lim_{n \to \infty}} F_{x_{n+1}, z_i}(\psi(t) - \delta), \quad \delta > 0.$$

By the arbitrariness of $\delta > 0$, we have

$$\hat{F}_{\{x_*\}, T_{i}x_*}(\psi(t)) \geq \overline{\lim_{n \to \infty}} F_{x_{n+1}, z_i}(\psi(t)).$$

Combining (3.2) and (3.3) we have

$$\frac{\lim_{n\to\infty} F_{x_{n+1},z_i}(\psi(t)) \ge \lim_{n\to\infty} F_{x_{n+1},z_i}(t)}{\ge \frac{\bigwedge_{\{x_*\},T_ix_*}(\psi(t))}{\ge \lim_{n\to\infty} F_{x_{n+1},z_i}(\psi(t))}}$$

$$\ge \overline{\lim}_{n\to\infty} F_{x_{n+1},z_i}(t).$$

Therefore

(3.4)
$$\lim_{n \to \infty} F_{x_{n+1}, z_i}(\psi(t)) = \hat{F}_{\{x_*\}, T_i x_*}(\psi(t)), \text{ and}$$

(3.5)
$$\lim_{n \to \infty} F_{x_{n+1}, z_i}(t) = \hat{F}_{\{x_*\}, T_i x_*}(\psi(t)).$$

By the arbitrariness of t, from (3.4) we have

$$\lim_{n \to \infty} F_{x_{n+1}, z_i}(t) = \hat{F}_{\{x_*\}, T_i x_*}(t), \ t \ge 0.$$

Therefore from (3.5) we have

$$\lim_{n \to \infty} F_{x_{n+1}, z_i}(t) = \hat{F}_{\{x_*\}, T_i r_*}(\psi(t))$$

$$= \hat{F}_{\{x_*\}, T_i r_*}(\psi^2(t))$$

$$= \cdots$$

$$= \hat{F}_{\{x_*\}, T_i r_*}(\psi^n(t))$$

$$\geq F_{x_*, z_i}(\psi^n(t)).$$

Letting $m \rightarrow \infty$, we have

$$F_{x_*,z_i}(t)=1, t>0.$$

This shows that $x_*=z_i$ for all i. Hence we have $\{x_*\}$ $\subseteq T_i x_*$ for all $i \in N$. This completes the proof.

The following theorem can be obtained from Theorem 3.4 as a corollary.

Theorem 3.5 Let $(T_i)_{i=1}^{\infty}: (E, \mathcal{F}, \Delta) \to (\hat{\Omega}, \hat{\mathcal{F}}, \Delta)$ be a sequence of fuzzy mappings. Assume that 1-level sets of a fuzzy set in $\hat{\Omega}$ are compact. Suppose that there exists a function $\varphi: [0, +\infty) \to [0, +\infty)$ satisfying the condition (Φ) such that for any $i, j \in N$ and any $x, y \in E$,

$$\hat{F}_{T_{ix},T_{jy}}(\varphi(t)) \ge \min\{F_{x,y}(t), F_{x,(T_{ix})}(t), F_{y,(T_{jy})}(t)\}, t \ge 0.$$

Then there exists an $x_* \in E$ such that

 $\{x_*\}\subset T_ix_*,\ i\in \mathbb{N}.$

Proof. Since any closed subset of a compact set is compact, it is easily shown from Theorem 3.4 that this theorem holds.

In fact, Theorem 3.5 is a slight generalization and an improvement of the main result of Lee *et. al.* [12] by deleting some of it's conditions, which can be called as an equality-type condition.

References

- R. K. Bose and D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, 21, 53-58, 1987.
- [2] D. Butnariu, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 7, 191-207, 1982.
- [3] G. L. Cain and K. H. Kasriel, Fixed and periodic point of local contraction mapping on probabilistic metric spaces, Math. Systems Theory 9, 289-297, 1976.
- [4] S. S. Chang, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 17, 181-187, 1985.
- [5] S. S. Chang, Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy Sets and Systems 24, 103-112, 1987.
- [6] S. S. Chang, Y. J. Cho, S. M. Kang and J. X. Fan, Common fixed point theorems for multi-valued mappings in Menger PM-spaces, Math. Japonica 40, 289-293, 1994.
- [7] J. X. Fan, A note on fixed point theorem of Hadzic, Fuzzy Sets and Systems 48, 391-395, 1992.
- [8] O. Hadzic, Fixed point theorems for multi-valued mappings in probabilistic metric spaces, Mat. Vesnik 3, 125-133.

- [9] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83, 556-569, 1981.
- [10] B. S. Lee and S. J. Cho, A fixed point theorem for contractive-type fuzzy mappings, Fuzzy Sets and Systems 61, 309-312, 1994.
- [11] B. S. Lee and S. J. Cho, Common fixed point theorem for sequences of fuzzy mappings, Int. J. Math & Math. Sci. 17(3), 423-428, 1994.
- [12] B. S. Lee, Y. J. Cho and J. S. Jung, Fixed point theorems for fuzzy mappings and applications, Comm. Korean Math. Soc. 11, 89-108, 1996.
- [13] B. S. Lee, G. M. Lee and D. S. Kim, Common fixed points of fuzzy mappings in Menger PM-spaces, J. Fuzzy Math. 2, 859-870, 1994.
- [14] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.
- [15] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10, 313-334.
- [16] B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math. 10, 673-675, 1960.
- [17] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metro spaces, Math. Systems Theory 6(2), 97-102, 1972.
- [18] T. Som and R. N. Mukherjee, Some fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 33, 213-219, 1989.
- [19] M. Stojakovic, Fixed point theorems in probabilistic metric spaces, Kobe J. Math. 2(1), 1-9, 1985.

이 병 수 (Byung-Soo Lee)

현재: 경성대학교 이과대학 수리과학부 교수, Nonlinear Analysis forum, Managing Editor, 한국수학교육학회 부회 장 겸 부산지회장, 한국 퍼지 및 지능 시스템 학회 협력이사

양 규 한 (Kyu-Han Yang)

현재 : 경성대학교 수학과 박사과정 수료