• 제목/요약/키워드: fixed carbon

검색결과 447건 처리시간 0.035초

Pd/SPK 촉매상에서 메탄의 열분해 반응으로부터 탄소 나노튜브 및 탄소 나노선의 제조 (Preparation of Carbon Nanotubes and Carbon Nanowires from Methane Pyrolysis over Pd/SPK Catalyst)

  • 서호준;권오윤
    • 공업화학
    • /
    • 제18권1호
    • /
    • pp.94-97
    • /
    • 2007
  • 대기압 조건에서 고정층 상압 유통식 반응기를 사용하여 Pd(5)/SPK 촉매상에서 산소의 몰 비 변화에 따른 메탄의 열분해 반응으로부터 탄소 나노튜브 및 탄소 나노선을 제조하였으며, SEM과 TEM을 이용하여 분석하였다. $CH_4/O_2$의 몰 비가 1인 경우, 촉매층 지지대 표면상에 탄소가 거의 침적되지 않았으나, $CH_4/O_2$의 몰 비가 2인 경우에는 촉매층 지지대 표면상에 반응기를 봉쇄할 정도로 다량의 탄소가 침적되었다. 침적된 탄소를 SEM과 TEM을 통하여 분석한 결과 많은 수의 단일 벽 탄소 나노튜브와 탄소 나노선들이 만들어졌음을 확인할 수 있었다. 촉매 표면상에 침적된 탄소 나노튜브의 생성 메카니즘은 첨단성장방식이었고, 촉매 지지대 표면상에 만들어진 탄소 나노튜브 및 나노선들의 생성은 일정한 탄소 성장속도 벡터와 탄소 나노선의 링구조의 핵형성이 중요한 역할을 하였다. SPK 촉매 담체는 열 안정성이 우수하였으며, $N_2$ 흡착등온선은 중기공 세공이 잘 발달된 IV형이었다.

하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향 (Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers)

  • 강남희;전철민;주형태;이수정
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

음향방출을 통한 $Carbon/BMI({\pm}45^{\circ})_{2s}$의 전단 거동 (Shear Behavior of $Carbon/BMI({\pm}45^{\circ})_{2s}$By Acoustic Emission)

  • 이택수;이종문;이재락
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.888-894
    • /
    • 1994
  • bismaleimide취약성을 개선 하기 위하여 toughening agent인 TM120을 첨가하여 carbon/$(\pm 45^\circ)_{2s}$를 제조하고 이들의 파손과 기계적 특성을 인당실험과 음향방출을 통해 자세히 논하였다. 첨가하는 TM120의 비율은 0, 5, 10, 15, 20, 25phr이었고, 1, 4-diazobicyclo-(2, 2, 2)-octane(DABCO) 0.2phr를 경화 촉진제로 사용하였다. 또한, 탄소 섬유는 Toray사의 T300를 사용하였고, 음향방출과 인장실험 결과로 TM120이 적당한 첨가량은 20phr이었으며, TM120은 cabon/$(\pm 45^\circ)_{2s}$의 파손특성과 기계적물성에 많은 영향을 미쳤다.

  • PDF

고정층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향 (Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor)

  • 김상범;김영국;황재영;김명수;함현식
    • 한국응용과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.45-50
    • /
    • 2004
  • The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst. Reaction temperatures were changed from 600 to $850^{\circ}C$, and reactants flow rates were changed from 100 to 200 mL/mim. There were no significant changes in the methane conversion observed in the range of temperatures used. It is possibly stemmed from the nearly total exhaustion of oxygen introduced. The selectiveties of hydrogen and carbon monoxide did not largely depend on the reaction temperature. The selectivities of hydrogen and carbon monoxide were 96 and 90%, respectively. Carbon deposition observed was the smallest at $750^{\circ}C$ and the largest at $850^{\circ}C$. It is found that the proper reaction temperature is $750^{\circ}C$. The best reactant flow rate was 150 ml/min.

Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films

  • Marroquin, Jason;Kim, H.J.;Jung, Dong-Ho;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.126-129
    • /
    • 2012
  • Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles ($Fe_3O_4$) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying $Fe_3O_4$ content. It was determined that a 1:1 ratio of CNT to $Fe_3O_4$ provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high $Fe_3O_4$ loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.

세슘카보네이트에서 이산화탄소의 수착반응 (Sorption Analysis of Carbon Dioxide onto Cesium Carbonate)

  • 손영식;김성수;박상욱
    • Korean Chemical Engineering Research
    • /
    • 제47권3호
    • /
    • pp.373-379
    • /
    • 2009
  • 고정층 반응기에서 cesium carbonate 흡착제를 사용하여 이산화탄소($CO_2$), 질소 및 수분의 혼합기체로부터 $CO_2$를 수착하여 $CO_2$-cesium carbonate의 반응속도론을 구하기 위하여 $CO_2$의 파과곡선을 측정하였다. 비촉매 불균일반응계에서 반응속도론을 해석하기 위하여 $CO_2$의 파과곡선을 사용하여 비활성화 모델로부터 반응속도론을 구하고 $CO_2$의 파과곡선의 비선형해석으로부터 비활성화 모델에서 수착속도상수와 비활성속도상수를 구하였다.

탄소와 질소 함량에 따른 탄질소 복합첨가강의 내마멸 특성 변화 (Wear-characteristics variation of Fe-C-N alloy with changing content of carbon and nitrogen)

  • 박준기;이슬기;김성준;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.385-388
    • /
    • 2009
  • Dry-sliding-wear behavior of Fe-18Cr-l0Mn steel with various carbon and nitrogen contents was characterized, and the effect of carbon and nitrogen contents on the wear was investigated. Dry sliding wear tests of the steel were carried out at room temperature against an AISI 52100 bearing steel ball using a pin-on-disk wear tester. Applied wear loads were varied from 10 N to 100 N, and the sliding distance was fixed as 720 m. Worn surfaces and the wear debris of the steel were examined using an SEM to find out the wear mechanism. It was found that the Fe-18Cr-10Mn with both carbon and nitrogen exhibited superior wear resistance to the steel with only nitrogen. The wear resistance of the Fe-18Cr-10Mn-xC-yN alloy increased with the increase of the carbon content. The excellent wear resistance of the Fe-18Cr-10Mn-xC-yN alloy was explained by the increased strain-hardening capability with the interstitial atoms.

  • PDF

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권6호
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

PECVD로 제조된 비정질 질화탄소 박막의 특성에 미치는 증착변수의 영향 (Effects of Deposition Conditions on the Properties of Amorphous Carbon Nitride Thin Films by PECVD)

  • 문형모;김상섭
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.150-154
    • /
    • 2003
  • Amorphous carbon nitride films were deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition technique (PECVD) using $CH_4$and $N_2$as reaction gases. The growth and film properties were investigated while the gas ratio and the working pressure were changed systematically. At 1 Torr working pressure, an increase in the $N_2$partial pressure results in a significant increase of the deposition rate as well as an apparent presence of C ≡N bonding, while little affecting the microstructure and amorphus nature of the films. In the case of changing the working pressure at a fixed $N_2$partial pressure of 98%, a film grown at a medium pressure of $1${\times}$10^{-2}$ Torr shows the most prominent C=N bonding nature and photoluminescent property.

Ethyl Silicate로부터 Silicon Nitride의 합성(I) (Synthesis of Silicon Nitride from Ethyl Silicate(I))

  • 오일환;박금철
    • 한국세라믹학회지
    • /
    • 제25권4호
    • /
    • pp.415-423
    • /
    • 1988
  • Mixtures of carbon and silica (about 0.46${\mu}{\textrm}{m}$) which was synthesized by the hydrolysis of ethyl silicate, the molar ratio of silica/carbon was fixed as 1/10(weight ratio : 1/2), were nitrided in the temperature range 135$0^{\circ}C$~150$0^{\circ}C$. The phse of the product Si3N4 was $\alpha$ phase and the morphology was hexagnoal prism and the nitridation reaction was completed in 5 hrs at 150$0^{\circ}C$ or 7hrs at 145$0^{\circ}C$. The reaction rate above 150$0^{\circ}C$ was diffusion-controlled, following Jander equation. Activation energy Q was derived from the Arrhenius plot and the value was about 101kcal/mol. Axis ratio of Lattice constants(c/a) was 0.726 and unit volume was $\AA$3, the larger the molar ratio of carbon/Alkoxide was, the smaller the particle size of $\alpha$Si3N4 was.

  • PDF