Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.2.126

Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films  

Marroquin, Jason (Department of Mechanical Engineering, College of Engineering, Kyung Hee University)
Kim, H.J. (Ocean Development System Laboratory, Korea Research Institute of Ships and Ocean Engineering)
Jung, Dong-Ho (Ocean Development System Laboratory, Korea Research Institute of Ships and Ocean Engineering)
Rhee, Kyong-Yop (Industrial Liaison Research Institute, Department of Mechanical Engineering, Kyung Hee University)
Publication Information
Carbon letters / v.13, no.2, 2012 , pp. 126-129 More about this Journal
Abstract
Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles ($Fe_3O_4$) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying $Fe_3O_4$ content. It was determined that a 1:1 ratio of CNT to $Fe_3O_4$ provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high $Fe_3O_4$ loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.
Keywords
nanocomposite films; multi-walled carbon nanotubes; magnetite nanoparticles; electrical conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Santos AS, Pereira AC, Durán N, Kubota LT. Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube. Electrochim Acta, 52, 215 (2006). http://dx.doi.org/10.1016/j.electacta.2006.04.060.   DOI   ScienceOn
2 Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis, 17, 7 (2005). http://dx.doi.org/10.1002/elan.200403113.   DOI   ScienceOn
3 Liu Y, Tang J, Chen X, Xin JH. Decoration of carbon nanotubes with chitosan. Carbon, 43, 3178 (2005). http://dx.doi.org/10.1016/j.carbon.2005.06.020.   DOI   ScienceOn
4 Tkac J, Whittaker JW, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors Bioelectron, 22, 1820 (2007). http://dx.doi.org/10.1016/j.bios.2006.08.014.   DOI   ScienceOn
5 Foygel M, Morris RD, Anez D, French S, Sobolev VL. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B, 71, 104201 (2005). http://dx.doi.org/10.1103/PhysRevB.71.104201.   DOI   ScienceOn
6 Wescott JT, Kung P, Maiti A. Conductivity of carbon nanotube polymer composites. Appl Phys Lett, 90, 033116 (2007). http:// dx.doi.org/10.1063/1.2432237.   DOI   ScienceOn
7 Lau C, Cooney MJ, Atanassov P. Conductive macroporous composite chitosan−carbon nanotube scaffolds. Langmuir, 24, 7004 (2008). http://dx.doi.org/10.1021/la8005597.   DOI   ScienceOn
8 Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6, 3067 (2005). http://dx.doi.org/10.1021/bm050378v.   DOI   ScienceOn
9 Wu ZP, Li MM, Hu YY, Li YS, Wang ZX, Yin YH, Chen YS, Zhou X. Electromagnetic interference shielding of carbon nanotube macrofilms. Scripta Mater, 64, 809 (2011). http://dx.doi.org/10.1016/j.scriptamat.2011.01.002.   DOI   ScienceOn
10 Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater, 12, 750 (2000). http://dx.doi.org/10.1002/(sici)1521-4095(200005)12:10<750::aid-adma750>3.0.co;2-6.   DOI   ScienceOn
11 Ma PC, Siddiqui NA, Marom G, Kim J-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites A, 41, 1345 (2010). http://dx.doi.org/10.1016/j.compositesa.2010.07.003.   DOI   ScienceOn
12 Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A. Novel materials based on chitosan and cellulose. Polym Int, 60, 875 (2011). http://dx.doi.org/10.1002/pi.3024.   DOI   ScienceOn
13 Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci, 34, 641 (2009). http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001.   DOI   ScienceOn
14 Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 14, 1609 (2002). http://dx.doi. org/10.1002/elan.200290000.   DOI   ScienceOn
15 Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H. Electrochemical behavior of l-dopa at single-wall carbon nanotube-modified glassy carbon electrodes. J Electroanal Chem, 569, 47 (2004). http:// dx.doi.org/10.1016/j.jelechem.2004.02.011.   DOI   ScienceOn
16 Luo XL, Xu JJ, Wang JL, Chen HY. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun, 2169 (2005). http://dx.doi.org/10.1039/B419197H.   DOI
17 Kwon J, Kim H. Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci, Part A: Polym Chem, 43, 3973 (2005). http:// dx.doi.org/10.1002/pola.20897.   DOI   ScienceOn
18 Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002.   DOI   ScienceOn
19 Jin F, Park S. A review of the preparation of carbon nanotubesreinforced polymer composites. Carbon Lett, 12, 57 (2011). http:// dx.doi.org/10.5714/CL.2011.12.2.057.   DOI   ScienceOn