Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.9.510

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers  

Kang, Nam-Hee (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM))
Chon, Chul-Min (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM))
Jou, Hyeong-Tae (Maritime Security Center, Korea Institute of Ocean Science & Technology(KIOST))
Lee, Sujeong (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM))
Publication Information
Korean Journal of Materials Research / v.23, no.9, 2013 , pp. 510-516 More about this Journal
Abstract
Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.
Keywords
geopolymer; fly ash; compressive strength; unburned carbon; microstructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Rahier, J. F. Denayer; B. Van Mele, J. Mater. Sci., 38, 3131 (2003).   DOI   ScienceOn
2 A. Nazari, Neural Comput & Applic, 23, 391 (2013).
3 R. P. Williams and A. van Riessen, Fuel, 89, 3683 (2010).   DOI   ScienceOn
4 C. M. Chon, S. Lee, and S. W. Lee, J. Min. Soc. Kor., 26, 27 (2013)(inKorean).   DOI
5 K. H. Pedersen, A. D. Jensen, M. S. Skjøth-Rasmussen, K. Dam-Johansen, Prog. Energy Combust. Sci., 34, 135 (2008).   DOI   ScienceOn
6 M. C. Fuerstenau, K. N. Han, Principles of Mineral Processing, 1st ed, p.169, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado, USA (2003).
7 K. Komnitsas and D. Zaharaki, Miner. Eng., 20, 1261(2007).   DOI   ScienceOn
8 P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. van Deventer, Colloids Surf., A: Physicochem. Eng. Asp., 269, 47 (2005).   DOI   ScienceOn
9 M. R. Rowles, J. V. Hanna, K. J. Pike, M. E. Smith, B. H. O'Connor, Appl. Magn. Reson., 32, 663 (2007).   DOI
10 M. Steveson and K. Sagoe-Crentsil, J. Mater. Sci., 40, 4247 (2005).   DOI
11 R. A. Fletcher, K. J. D. MacKenzie, C. L. Nicholson, and S. Shimada, J. Eur. Ceram. Soc., 25, 1471 (2005).   DOI   ScienceOn
12 M. Rowles and B. O'Connor, J. Mater. Chem., 13, 1161 (2003).   DOI   ScienceOn
13 D. Antenucci, C. Philippart, G. Lorenzi, J. Davidovits, C. Fernandez-Pereira, Y. Luna Galiano, X. Querol, N. Moreno, M. Izquierdo, E. Alvarez, O. Fonte, F. Plana, H. Nugteren, V. Butselaar and L. Schouten, Understanding and mastering coal fired ashes geopolymerisation process in order to turn potential into profit (GEOASH), 1st ed, p.7, European Commission, Luxembourg, Brussels (2009).
14 S. Kumar and R. Kumar, Ceram. Int, 37, 533 (2001).
15 S. Lee, H. T. Jou, C. M. Chon, N. H. Kang, and S. B. Cho, J. Kor. Cer. Soc., 50, 134 (2013).   DOI   ScienceOn
16 A. Van Riessen, C. T. Nigel, Fuel, 111, 829 (2013).   DOI   ScienceOn
17 A. Van Riessen, C. T. Nigel, Fuel, 106, 569 (2013).   DOI   ScienceOn
18 J. Temuujin, R. P. Williams, and A. van Riessen, J. Mater. Process. Technol., 209, 5276 (2009).   DOI   ScienceOn
19 J. L. Provis, C. Z. Young, P. Duxson and J. S. J. van Deventer, Eng. Asp., 336, 57 (2009).   DOI   ScienceOn
20 S. Lee, M.D. Seo, Y. J. Kim, H. H. Park, T. N. Kim, Y. Hwang, and S. B. Cho, Int. J. Miner. Proc., 97, 20 (2010).   DOI   ScienceOn
21 T. H. Ha, S. Muralidhara, J. H. Bae, Y. C., Lee, H. G., Park, K. W., Kim, D. K., Constr. Build. Mater. 19, 509 (2005).   DOI   ScienceOn
22 E. Freeman, Y. M. Gao, R. Hurt, E. Suuberg, Fuel, 76, 761 (1997).   DOI   ScienceOn
23 T. Silverstrim, H. Rostami, B. Clark, and J. Martin, Nineteenth International Cement Microscopy Association, Cincinnati, OH, (1997).
24 H. K. Park, S. W. Yoo, M. Y. Jung, JKIRR, 19, 16(2010).