• Title/Summary/Keyword: fire compartment

Search Result 213, Processing Time 0.02 seconds

On the Reliability of the Computational Fire Model Based on the Yield Rate Concept of Combustion Gases (생성율 개념에 기초한 화재모델의 신뢰성에 대한 연구)

  • Kim, Sung-Chan;Ko, Gwon-Hyun;Lee, Seong-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.130-136
    • /
    • 2009
  • The present study has been performed to evaluate the reliability of the fire field model (FDS version 5.2) with yield rate concept of combustion products. The CO and smoke density predicted by FDS model was directly compared with measurement in a reduced scale ISO-9705 room. The GER (global equivalence ratio) concept was used to characterize the CO and smoke density with ventilation condition in the fire compartment. The FDS model tends to under-predict CO concentration and smoke density than those of measurement for the under-ventilated conditions. Also, the discrepancy between predicted and measured result increases as GER increases. In order to improve the reliability of the fire model for performance evaluation of fire safety, the fire model is necessary to be validated in various fire cases as well as develop detailed physical model.

Evaluation on Sensitivity and Approximate Modeling of Fire-Resistance Performance for A60 Class Deck Penetration Piece Using Heat-Transfer Analysis and Fire Test

  • Park, Woo Chang;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and to prevent flame diffusion in the case of a fire accident in a ship or offshore plant. In this study, the sensitivity of the fire-resistance performance and approximation characteristics for the A60 class penetration piece was evaluated by conducting a transient heat-transfer analysis and fire test. The transient heat-transfer analysis was conducted to evaluate the fire-resistance design of the A60 class deck penetration piece, and the analysis results were verified via the fire test. The penetration-piece length, diameter, material type, and insulation density were used as the design factors (DFs), and the output responses were the weight, temperature, cost, and productivity. The quantitative effects of each DF on the output responses were evaluated using the design-of-experiments method. Additionally, an optimum design case was identified to minimize the weight of the A60 class deck penetration piece while satisfying the allowable limits of the output responses. According to the design-of-experiments results, various approximate models, e.g., a Kriging model, the response surface method, and a radial basis function-based neural network (RBFN), were generated. The design-of-experiments results were verified by the approximation results. It was concluded that among the approximate models, the RBFN was able to explore the design space of the A60 class deck penetration piece with the highest accuracy.

A Study on The Estimation of Escape Time In Compartment Fires (오피스빌딩 화재사고 발생 시 피난 적정성 평가에 관한 연구)

  • 진복권;정수일
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.3
    • /
    • pp.57-67
    • /
    • 2003
  • The trends in building construction these days are moving towards having better work space and greater suitability for the use of information technology, Therefore people can work in a more relaxed, delightful and pleasant environment. So accidents like fire could cause the mass destruction of human beings. In this paper, we estimated the escape time from a building and simulated the study results on computer to see how safe it would be in a real situation.

A Study on the Consideration Factors for the Calculation of Elevator Evacuation Time (엘리베이터 피난계산 고려인자에 관한 연구)

  • Kim, Hak-Joong;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • It is more important to study for reducing the evacuation time of occupant in fire, because the building has been taller and deeper. It has known that elevator was not safe in fire situation. So, the using elevator for evacuation has been prohibited. But the study of elevator evacuation is progressed with designing the elevator safe from flame and smoke. This study analyze the consideration factors for the calculation of elevator evacuation time. The factors for elevator evacuation calculation is starting time, round trip time. And round trip time is divided into standing time and travel time. The elevator evacuation time can be calculated by compounding these factors and adding the efficiency. For using elevator to evacuate, we need additional study for smoke control, compartment, water proof and safe electric power supply.

Jet Entrainment Effect in Buoyant Jet and Iso-Thermal Fire Modeling (부력제트의 주위공기 유입효과 및 등온기체 모델링)

  • Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.111-115
    • /
    • 2009
  • Acetone LIF and Rayleigh scattering measurements were performed to identify the entrainment of ambient air in the buoyant jet qualitatively. The air entrainment near nozzle exit was enhanced with increasing both an axial distance and Reynolds number. The results supported that the air entrainment had to be considered in isothermal model for the development of its accuracy. Also, this paper provided an isothermal model based on the ideal plume, of which radiative heat loss fraction was assumed to 0.35 and the entainment of isothermal jet was considered. This simple model could be used in compartment or semi-enclosure fires such as tunnel, and it is more reliable because of introducing entrainment effect in isothermal jet.

Analysis on Activation Characteristic of Heat Detectors in a Compartment Fire (실내화재에서의 열감지기 동작특성 분석)

  • Ryu, Hocheol
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.598-608
    • /
    • 2014
  • The first operation of alarm system starts at a detector. And the largest effect is produced on the operation of detector by the fire source position and installation position. Nevertheless, the Korean standard for the installation of detector only specifies matters of fire detector installation according to area and height, without consideration of installation position and fire source position. Therefore, this study carried out a fire test in consideration of detector installation position and fire source position (5 places) in order to minimize casualties owing to the fast operation of fire detector when a fire occurred. Considering that it took the longest time for a detector close to a wall to work in the results of this test, it was possible to find that a minimum clearance to the wall was required.

A Study on the Fire Spread between Office Room and Atrium in the Atrium Building (아트륨 빌딩에서의 사무실과 아트륨간의 화재확산에 관한 연구)

  • Lee, Su-Kyung;Kim, Jong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2000
  • Generally, There is to install fire resist shutter or to compart between the office room and the atrium in the atrium buildings in Korea. But, Glass wall that is installed sprinkler which purpose to protect it from fire, is already installed between the office room and the atrium in the advanced nations. We study this problem as follow; We made the fire scenario, and analyze each scenario using FASTLite is fire modeling software and BREAK1 is to predict the window breakage time in the compartment fire. In this study, we can decide that fire compartmentalization between atrium and office rooms doesn't require in Atrium building if the material and fire protection system were reliable. Consequently, Korean Fire Protection Regulations have to consider in direction of increasing freedom of building.

  • PDF

Case Study of a Field Test for a Smoke Control System Using Sandwich Pressurization (샌드위치 가압을 이용하는 연기제어 시스템의 현장실험 사례 연구)

  • Kim, Jung-Yup;Ahn, Chan-Sol
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.87-92
    • /
    • 2016
  • Amid the growing number of high-rise complex buildings in Korea, efficient smoke prevention technology in a fire is required and as an alternative of a mechanical smoke control system in high-rise buildings, the use of a smoke control system using sandwich pressurization has been on the rise. In such a system, the appropriate pressure difference and the data for designing the air supply and exhaust flow rate are necessary to prevent the spread of smoke and offer a tenable evacuation environment. As part of such effort, this paper presents a field test process and result after testing a building where such a smoke control system using sandwich pressurization has been installed. A ventilation rate of 6 cycles per hour were applied to simulate the air exhaust flow rate on a fire floor and the air supply flow rate on the floors above and below the fire floor. As a result of the system operation, pressure difference of approximately 260 Pa between the 12th floor of a fire and the 13th floor was generated. The over pressure of the experiment has a serious effect on the evacuation or fire compartment so that it is necessary to examine the improvement.

A Numerical Study of Radiation Effect under Smoke Movement in Room Fire (실내화재에서 연기거동에 미치는 복사영향에 대한 수치해석적 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.6-12
    • /
    • 2000
  • This paper describes the smoke movement of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of compartment space containing the radiation effect under smoke movement in room fire. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon $ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown reasonable agreement compared with the experimental data. On the other hand, a difference of a lot was found between the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire may be necessary in order to produce more realistic result.

  • PDF

Analysis on the Results of Measured Concentration of the Combustion Gases Considering Respiration Characteristics in Gasoline Pool Fire (가솔린 풀 화재에서 인체 호흡량 변화를 고려한 연소가스 농도 측정 결과 분석)

  • Choi, Seung Il;Kang, Jung Ki;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.83-88
    • /
    • 2019
  • This study examined the concentration of combustion gases while considering low ventilation and respiration frequency. A one-quarter-size ISO 9705 room corner test was performed. The concentrations of carbon monoxide and oxygen were measured in each case with the continuous inhalation of combustion gas with low ventilation (2, 6, and 10 LPM) and different respiration frequencies (2 s, 5 s, and infinity). The combustion of a gasoline pool fire in the compartment had a theoretical heat release rate of 5.34 kW. The results show that the deviation of the gas concentrations becomes higher as the low ventilation increases compared to the respiration frequency. In addition, as the respiration frequency increases, the variation in the minimum oxygen concentration is larger than the average value, while in the case of carbon monoxide, the variation in the average value is larger than the maximum value. These results show that the inhalation characteristics of refugees should be considered to investigate fires.