• Title/Summary/Keyword: fire compartment

Search Result 213, Processing Time 0.026 seconds

A Study on the Limit Heat Release Rate for the Prediction on Fire Characteristics in the Compartment Space (구획공간의 화재성상 예측을 위한 한계 열방출률에 관한 문헌고찰)

  • Huh, Ye-Rim;Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.111-112
    • /
    • 2020
  • In the case of, the ignition of flammable external materials by the radiant flame and the accompanying fire in the upper layer are occurring every year, and in the case of the Flashover prediction formula, the limit is reached through the surface area of the space and the factor. Predicts heat release rate. In this study, the critical heat release rate of each prediction formula was calculated based on the ISO 9705 model.

  • PDF

Measurement of the construction structure of hot-heated cement using nitrogen adsorption method (질소흡착법을 사용한 고온 가열 시멘트의 세공구조 측정)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.140-141
    • /
    • 2020
  • Concrete has a lower thermal conductivity or thermal diffusion coefficient compared to other building materials, so it is widely used as fireproof compartment material or refractory material for structures. However, in the event of thermal damage such as fire, cement curing agents and aggregates act differently, resulting in heat generation or deterioration of tissue due to dehydration, resulting in deterioration of physical properties and fire resistance. Therefore, in this study, the processing structure of cement paste is measured through nitrogen absorption method. The test specimen is a cement paste of 40% W/C and is set at 1000 ℃ under heating temperature conditions. As the temperature rose, the micro-pore mass below was reduced based on about 0.01 감소m, but the air gap above that was increased.Thus, in the range of pores measured in nitrogen adsorption, the air mass tended to decrease under high temperature conditions.

  • PDF

Analysis of Causes of Casualties in Jecheon Sports Center Fire - Focus on Structural Factors of Building and Equipment - (제천 스포츠센터 화재의 다수 사상자 발생원인 분석 - 건물과 설비의 구조적인 요인을 중심으로 -)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.86-94
    • /
    • 2018
  • A sports center fire in Jecheon caused 29 deaths and 40 injuries. This study focused only on the structural factors of the building and equipment to investigate the causes of casualties based on the fire investigation results at the sports center. The structural factors of the building and equipment were a piloti-type parking lot, lack of a fire compartment between the piloti-type parking lot and lobby, lack of an installed sprinkler system, lack of an installed fire door in the main stairs on the $1^{st}$ floor, lack of an installed fire water tank on the rooftop, an installed pocket fire door in the main entrance on the $2^{nd}$ floor, poor fire compartments in an EPS space and a pipe pit and on each floor, a leak in the joint of a drain pipe, plywood installed in the hoistway of the freight elevator and interior wall, illegal remodeling of a closed rooftop structure, which cannot discharge smoke and heat, installed styrofoam insulation in the inside of the parking lot ceiling, an installed tempered glass window, which cannot be opened in the ladies bathroom on the $2^{nd}$ floor, and a finished dryvit exterior wall.

The Experimental Study for Radiant Heat Flux of Non-insulated Glazed Window in Fire (화재시 비차열 유리의 복사열에 관한 실험적 연구)

  • Park, Soo-Young;Seo, Hee-Won;Kim, Dae-Hoi;Wang, Nam-Woong;Yeo, In-Hwan;Choi, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.26-33
    • /
    • 2014
  • Recently in Korea, the interest for using window and window-wall in building picks up due to the beauty and utilization of space. But, interior space of the buildings shall be compartmentalized by fire resistance structures in accordance with the Korean building codes to prevent the spread of flame and damage of human life in fire. In case of installing non-insulated glazed window in compartment wall, the flame spread to adjacent space and the damage of human life by radiant heat can occur in fire. On this study, to confirm the risk of radiant heat for non-insulated glazed window in fire, the fire resistance tests were conducted. The temperature rise and heat flux on unexposed space was measured and analyzed.

A Study on the Prediction of Fire Load in case of a Train Fire (철도 차량 화재시 화재강도 예측을 위한 연구)

  • Yang, Sung-Jin;Chang, Jung-Hoon;Gang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2101-2108
    • /
    • 2008
  • Most of train fires which occur in usual cases do not grow up significantly on a large scale enough to bring about casualties and harmful damages. However, the consequence of some train fire accidents can be devastating disaster so that it would be even recorded in history in unusual cases. Accordingly, such a probability of fire disaster cannot be ignored in aspect of the railway safety assesment. A scale of injury and damage is very difficult to predict and analyze. Because it is depend on various factors, i.e. fire load, burning period, facilities, environment condition, and so on. Thus, a prediction of fire load could be understood as a one methodology to estimate railway safety assesment. The summation method which is one of them is used to evaluate the overall fire load by assuming that sum of heat release rate per unit area or mass of each composite material equals the total. However, since the train fire is classified into a compartment fire in under-ventilation condition. The summation method do not estimate a fire load completely. In this journal, Various methods to predict fire load are introduced and evaluated. Especially the fire simulation tool FDS(Fire Dynamics Simulator)which is based on the CFD(Computational Fluid Dynamics) is introduced, too. Through the FDS simulation, numerical analyses for the fire load and flame spread are performed. Then, these results of the simulation are validated through the comparison study with the experimental data. Then, limitations and approximations including in simulation process are discussed. The future direction of research is proposed.

  • PDF

A Study on a PCB Manufacturing Plant's Fire Risk Assessment due to the Mitigation of Fire Protection Zone and an Improvement Way through Estimation of Sprinkler Demand Water Flow Rate (방화구획 완화에 따른 PCB공장의 화재위험평가 및 스프링클러 요구살수유량 산정을 통한 기준개선안에 관한 연구)

  • Oh, Chan-Wook;Oh, Ryun-Seok;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.56-62
    • /
    • 2019
  • A sprinkler is a fire extinguishing equipment installed in a protected area where a detector or head detects a fire and automatically puts out the fire. However, the Ministry of Land, Infrastructure and Transport's "Regulations on Building Evacuation and Fire Protection Standards, etc." stipulate that fire compartment area should be reduced to three times by installing sprinkler facilities in the case of factories and warehouses. In this study, fire hazard was analyzed for a real PCB factory which mitigated the fire protection zone by sprinkler installation, and the head opening characteristics of sprinkler facilities through computer simulation, installation standards of sprinkler facilities, thermal performance, operating range, and the amount of water sprayed to identify the problems of operation of sprinkler facilities in case of fire, and to suggest the grounds such as required sprinkling flow rate for system improvement.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part I: 과환기화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.31-39
    • /
    • 2013
  • The Fire Dynamics Simulator (FDS) has been applied to simulate a full-scale pool fire in well-confined and mechanically ventilated multi-compartments representative of nuclear power plant. The predictive performance of FDS was evaluated through a comparison of the numerical data with experimental data obtained by the OECD/NEA PRISME project. To identify clearly the FDS results regarding to the user-dependence in the process of FDS implementation except for the intrinsic limitation of FDS such as simple combustion model, only the over-ventilated fire condition was chosen. In particular, the importance of accurate boundary conditions (B.C.) in mechanically ventilated system were discussed in details. It was known from FDS results that the B.C. on inlet and outlet vents did significantly affect the thermal and chemical characteristics inside the compartments. Finally, it was confirmed that the FDS imposed an accurate ventilation B.C. provided qualitatively good agreement with temperatures, heat fluxes and concentrations measured inside the nuclear-type multi-compartments.

An Experimental and Numerical Study on Fire Suppression Using a Mid-low Pressure Water Mist in a Carriage Fire (중저압 물분무를 이용한 객차내 화재진압에 관한 실험 및 수치해석적 연구)

  • Roh Jae-Seong;Yang Seung-Shin;Kim Dong-Hyun;Jung Woo-Sung;Jang Yong-Jun;Ryou Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.291-297
    • /
    • 2006
  • The present study investigated the effect of fire suppression using a mid-low pressure water mist in a carriage fire. The fire extinguishing time and temperature distributions below ceiling in the enclosed compartment of $2.9m{\times}2.8m{\times}5.0m$ were measured by stopwatch and k-type thermocouples for various fire positions. The numerical simulations were extensively performed using. Fire Dynamics Simulator(FDS, Ver. 4.0) code and the predictions were compared with experimental data. The prediction results showed good agreement with the measured maximum temperature in the all cases. Whereas the predicted temperature was about $40^{\circ}C$ higher than the measured one after operating of water mist. The predicted fire extinguishing times were compared with those of measured data. Fires are extinguished within 200 seconds at the experiment in Case 2 and Case 3. But in Case 1 fire was not extinguished in the numerical simulation. The reason of the discrepancy between predicted and measured data was that a simple suppression algorithm has been implemented in FDS. Also, various databases of fire properties for combustible materials and more elaborate model considering the water mist were required fur better predictions of the cooling and suffocation effect.

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling (화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰)

  • Yang, Ho-Dong;Han, Ho-Sik;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.116-123
    • /
    • 2016
  • The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

Geometric Effects of Compartment Opening on Fuel-Air Mixing and Backdraft Behavior (개구부의 기하학적 형상이 구획실의 연료-공기 혼합특성 및 백드래프트 거동에 미치는 영향)

  • Ha, Suim;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • Mixing characteristics and backdraft dynamics were investigated using large eddy simulation for compartments initially filled with methane fuel. Four different opening geometries, i.e. conventional door opening case (Door) and the cases where horizontal door was implemented on the upper ($Slot_U$), middle ($Slot_M$) and lower part ($Slot_L$) of side wall, were considered in the simulations. For cases without ignition, the amounts of inflow oxygen and outflow fuel from the compartment opening were, from largest to smallest, Door > $Slot_U$ ~ $Slot_M$ > $Slot_L$. However, the fuel and oxygen were the best mixed for the $Slot_U$ case while the fuel and oxygen were not well mixed and in relatively separated two layers for the $Slot_L$ case. The global equivalence ratio defined by the amounts of fuel and oxygen in the compartment was not correlated reasonably with the peak pressure of backdraft. The peak pressure during backdraft was the highest for the $Slot_U$ case, a well mixed condition of fuel and air, and backdraft was not found for the $Slot_L$ where the pressure rise was not so high due to the mixing status. The peak pressures for the Door and $Slot_M$ cases were in between Door and $Slot_L$ cases. The peak pressure during backdraft was well correlated with the total amount of heat release until the instance of backdraft occurrence.