DOI QR코드

DOI QR Code

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition)

원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part I: 과환기화재 조건)

  • Received : 2013.01.30
  • Accepted : 2013.04.05
  • Published : 2013.04.30

Abstract

The Fire Dynamics Simulator (FDS) has been applied to simulate a full-scale pool fire in well-confined and mechanically ventilated multi-compartments representative of nuclear power plant. The predictive performance of FDS was evaluated through a comparison of the numerical data with experimental data obtained by the OECD/NEA PRISME project. To identify clearly the FDS results regarding to the user-dependence in the process of FDS implementation except for the intrinsic limitation of FDS such as simple combustion model, only the over-ventilated fire condition was chosen. In particular, the importance of accurate boundary conditions (B.C.) in mechanically ventilated system were discussed in details. It was known from FDS results that the B.C. on inlet and outlet vents did significantly affect the thermal and chemical characteristics inside the compartments. Finally, it was confirmed that the FDS imposed an accurate ventilation B.C. provided qualitatively good agreement with temperatures, heat fluxes and concentrations measured inside the nuclear-type multi-compartments.

원자력발전소의 강제 환기가 적용된 밀폐된 다중구획에서 실규모 pool 화재를 모사하기 위하여 FDS가 적용되었다. FDS의예측성능은 수치결과와 OECD/NEA 화재실증실험 국제공동연구 프로젝트(PRISME)를통해 얻어진 실험결과의비교를 통해 평가되었다. 단순한 연소모델의 적용으로 발생되는 FDS의 본질적인 한계를 제외하고 FDS 수행과정에서 발생된 사용자 의존성에 따른 FDS의 예측결과 차이를 명확히 확인하기 위하여, 과환기 화재조건이 본 연구에서 검토되었다. 특히 강제 환기시스템에서 정확한 경계조건의 중요성이 상세하게 논의되었다. 급기 및 배기를 위한 환기구의 경계조건은 구획 내부의 열 및 화학적특성에 큰 영향을 주고 있음을 FDS 결과를 통해 알 수 있었으며, 정확한 경계조건이 부여된 FDS는 원전 타입의 다중 구획 내부의 온도, 열유속 및 화학종 농도를 정량적으로 잘 예측하고 있음을 확인하였다.

Keywords

References

  1. NFPA, "Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating Plant", NFPA 805, 2001 Edition (2003).
  2. U.S. NRC and EPRI, "Nuclear Power Plant Fire Modeling Analysis Guidelines", NUREG-1934/EPRI 1023259, Finial Report (2012).
  3. U.S. NRC and EPRI, "Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications", NUREG-1824/EPRI 1011999, Finial Report (2007).
  4. M. Bundy, A. Hamins, E. L. Johnsson, S. C. Kim, G. H. Ko and D. Lenhert, "Measurement of Heat and Combustion Products in Reduced-scale Ventilation-limited Compartment Fires", NIST Technical Note 1483, NIST, Gaithersburg, MD (2007).
  5. C. H. Hwang, A. Lock, M. Bundy, E. Johnsson and G. H. Ko, "Effects of Fuel Location and Distribution on Full-scale Underventilated Compartment Fires", Journal of Fire Science, Vol. 29, pp. 21-52 (2011). https://doi.org/10.1177/0734904110372119
  6. A. Lock, M. Bundy, E. L. Johnsson, A. Hamins, G. H. Ko, C. H. Hwang, P. Fuss and R. Harris, "Experimental Study of the Effects of Fuel Type, Fuel Distribution and Vent Size on Full-scale Underventilated Compartment Fires in an ISO 9705 Room", NIST TN 1603, NIST, Gaithersburg, MD (2008).
  7. C. H. Hwang, "Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-closed Compartment", Journal of Korean Institute of Fire Science & Engineering, Vol. 26, No. 2, pp. 75-83 (2012). https://doi.org/10.7731/KIFSE.2012.26.2.075
  8. L. Audouin, "Functional Specification for the Test Matrix in PRISME Door Experiments", Technical Note SEMIC- 2006-146 - PRISME-2006-07, IRSN (2006).
  9. J. M. Such, C. Casselman, M. Forestier and H. Pretrel, "Description of the PRISME Experimental Program", DPAM/DIR-2005-117 (2005).
  10. Le Saux W., "PRISME Door Programe-PRS_D3 Test Report", DPAM/SEREA-2006-342, PRISME-014 (2006).
  11. Le Saux W., "Description of the DIVA Facility", DPAM/ SEREA-2006-157, PRISME-2006-008 (2006).
  12. J. E. Floyd and K. B. McGrattan, "Extending the Mixture Fraction Concept to Address Under-Ventilated Fires", Fire Safety Journal, Vol. 44, pp. 291-300 (2009). https://doi.org/10.1016/j.firesaf.2008.07.002
  13. K. McGrattan, S. Hostikka, J. Floyd, H. Baum and R. Rehm, "Fire Dynamic Simulator (Version 5): Technical Reference Guide", NIST SP 1018-5, NIST, Gaithersburg, MD (2007).
  14. W. Mell, A. Maranghides, R. McDermott and S. L. Manzello, "Numerical Simulation and Experiments of Burning Douglas Fir Trees", Combust. Flame, Vol. 156, pp. 2023-2041 (2009). https://doi.org/10.1016/j.combustflame.2009.06.015
  15. J. Smagorinsky, "General Circulation Experiments with the Primitive Equations", Monthly Weather Review, Vol. 91, No. 3, pp. 99-164 (1963). https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  16. G. D. Raithby and E. H. Chui, "A Finite-Volume Method for Predicting Radiant Heat Transfer in Enclosures with Participating Media", Journal of Heat Transfer, Vol. 112, No. 2, pp. 415-423 (1990). https://doi.org/10.1115/1.2910394
  17. H. Pretrel, "PRISME Source Program-Analysis Report", NT SEREA-2005-015 (2005).
  18. L. Audouin, L. Chandra, J.-L. Consalvi, L. Gay, E. Gorza, et al., "Quantifying Differences between Computational Results and Measurements in the Case of a Large-scale Well-confined Fire Scenario", Nuclear Engineering and Design, Vol. 241, pp. 18-31 (2011). https://doi.org/10.1016/j.nucengdes.2010.10.027
  19. X. Jiang and K. H. Luo, "Dynamics and Structure of Transitional Buoyant Jet Diffusion Flames with Side-wall Effects", Combustion and Flame, Vol. 133, pp. 29-45 (2003). https://doi.org/10.1016/S0010-2180(02)00539-4
  20. A. Bounagui, N. Benichou, C. McCartney and A. Kashef, "Optimizing the Grid Size Used in CFD Simulations to Evaluate Fire Safety in Houses", In: 3rd NRC Symposium on Com- putational Fluid Dynamics, High Performance Computing and Virtual Reality, Ottawa (2003).
  21. K. McGrattan, J. Floyd, G. Forney, H. Baum and S. Hostikka, "Improved Radiation and Combustion Routines for a Large Eddy Simulation Fire Model", In: Fire Safety Science-Proceedings of the Seventh International Symposium, Worcester, MA, pp. 827-838 (2003).
  22. C. H. Hwang, A. Lock, M. Bundy, E. Johnsson and G. H. Ko, "Studies on Fire Characteristics in Over- and Underventilated Full-scale Compartment," Journal of Fire Science, Vol. 28, pp. 459-486 (2010). https://doi.org/10.1177/0734904110363106
  23. S. Y. Mun and C. H. Hwang, "Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room", Journal of Korean Institute of Fire Science & Engineering, Vol. 26, No. 3, pp. 21-28 (2012). https://doi.org/10.7731/KIFSE.2012.26.3.021