• Title/Summary/Keyword: fire compartment

Search Result 212, Processing Time 0.028 seconds

THERMAL AND SMOKE MEASUREMENTS OF VEHICLE FIRES Establishing practical large-scale experiment for vehicle fires

  • Kim, Jeong-Hun;Kim, Hong;Lee, Bog-Young;Lee, Chang-Seop
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.335-342
    • /
    • 1997
  • Experiments were conducted to evaluate the hazard risks of vehicle fires. Sensors were strategically placed in passenger cars to determine the temperature, propagation rate and direction of flame. The life safety hazard evaluations such as smoke and gas analysis were included. An important ignition position was performed in the engine compartment. The effects of different ignition positions and the opening of door glasses were also reviewed. The experimental results indicate that the maximum temperature when a vehicle burns varies commonly from 90$0^{\circ}C$ -100$0^{\circ}C$. The flame reaches in the face of a driver about 6-7minutes and the windshield glass breaks about 10 minutes after the ignition in the engine compartment of vehicle. And the smoke and gas concentrations reached the limit of human inhalation after 13-14 minutes. Especially the concentrations of carbon monoxide exceeded the TWA(50 ppm) during short time after ignition in cases of all experiments.

  • PDF

The Study on Compartment Fire Experiment According to Fire Load (화재하중에 따른 구획화재 실험 연구)

  • Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.16-22
    • /
    • 2017
  • In Korea, performance-based fire safety designs are being discussed to deal with the various risks of fire in complex and diverse types of structure. However, performance-based fire safety designs are not actively employed because it is difficult to estimate the fire characteristics related to the various factors in buildings. In this study, real scale fire tests were conducted based on fire severity levels and fire loads provided in He New Zealand Building Code, in order to use the results as guidelines and fundamental data for performance-based designs. In the real scale fire tests conducted in a 10MW full-scale calorimeter, wood cribs were placed in a $2.4(L){\times}3.6(W){\times}2.4(H)m$ mock-up of a compartment which had one $0.8(L){\times}2.0(H)$ opening for different fire loads and heating was continued until all of the wood cribs were burned down. The heat release rate started to increase rapidly 90 seconds after the wood cribs caught fire. In the test with a fire load level 1, the maximum heat release rate of 4743.4 kW was reached at 244 second. In the test with fire load level 2, a maximum heat release rate of 5050.9 kW was reached at 497 second. In the test with fire load level 3, a maximum heat release rate of 4446.9 kW was reached at 677 second.

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

Large Eddy Simulation of Fire and Smoke Control in a Compartment with Large Openings (큰 개구부가 있는 공간의 화재와 제연의 대와류모사)

  • 박외철
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.7-12
    • /
    • 2003
  • A 50 kW polyurethane fire in a compartment of 4 m ${\times}$ 1 m ${\times}$ 1.5m with large openings similar to a subway station was simulated by a large eddy simulation to investigate the fire and smoke control. The NIST FDS, which employed a mixture fraction combustion model and a finite volume method for radiation, was utilized. Distribution of temperature and smoke particles was compared with in the lower and upper corridors for three different smoke control systems, ventilation, purge, and extraction, starting in 5 sec from the ignition of the fire. For the given geometries, the ventilation system showed the best smoke removal rate and lowest temperature distribution in the both corridors. It was confirmed that the purge system is not recommended for a subway station since the smoke removal rate of the purge system was worse than that without a smoke control system.

An Experimental Investigation on Combustion Characteristics of the Knockdown Building (조립식 건축물의 화재특성연구)

  • Lee, Jung-Yun;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • The recent fire incident in an elementary school of Chonan city causes the media focus on the fire safety of residential container buildings. In this study, real fire tests were conducted in this kind of buildings. Combustion products including $O_2$, $CO_2$, CO, $NO_x,$, $SO_x$, HCI, HCN were measured, in order to investigate the hazard-reduction effects of employing gas mask protected with filter during the fire emergency of residential container buildings. According to the test results, whether or not employing the filter showed a sheer difference in the toxicity of the fire-induced gases, and then the importance of wearing a gas mask was evidently demonstrated.

NEW TREND OF FIRE SCIENCE AND EIRE PROTECTION TECHNOLOGY

  • Sugahara, Shinichi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.19-26
    • /
    • 1997
  • Firesafety design engineerings have been mainly derived from complicated rearrangement of descriptive specifications in codes or regulations through a great number of lessons from fire disasters. In this paper, the author refers to some recent developments in the field of building fire protection. At first, the author expresses his viewpoints concerning performance-based design codes, which have been popular throughout the world as a symbol of freedom from restricted usage of building materials and components prescrived in regulation or bylaws, in spite of some conflicts between objects-oriented design method and industrial mass production. Secondly, the author introduces several innovative fire protection methods adopted for large or void spaces in building complex. Finally, the author forcasts a next development of firesafety science and technology, aimed at securing personal safety in hyperscale urban areas.

  • PDF

Calculation of Fire-resisting Time and Extraction of Simple Transplants in the Event of a Building Fire (건축물 화재시 필요내화 시간 산정 및 간이식 도출)

  • Kim, Yun-Seong;Han, Ji-Woo;kim, Hye-Won;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Yeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.59-60
    • /
    • 2020
  • Large fires continue to spread throughout the building, including the fire in Uijeongbu in 2015, the fire in Jecheon in 2017, and the fire in Miryang in 2018. According to the above fire case investigation, major problems were the fire resistance performance of compartment members such as fire doors, the fire spread due to damage to exterior wall openings, and smoke spread through vertical openings. However, in South Korea, only specification design is implemented for buildings that are not subject to performance design. In addition, the analysis of the fire resistance performance standards of building members in the specification design showed that fire doors were not specified in detail for 60 minutes of insulation performance and 60 minutes of fire resistance performance of E/V doors, limiting the prevention of fire spread. Therefore, the purpose of this research is to prepare measures to prevent the spread of fire by presenting simple transplants for calculating the required fire time according to the architectural design conditions for the performance design of the components of the fire room according to the purpose of use of the front of the building.

  • PDF

The Water Curtain Installation Guideline for Fire Spread Prevention in Market (재래시장의 화재확산 방지를 위한 수막설비 설치 지침)

  • Choi, Jung-Uk;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.269-274
    • /
    • 2016
  • This paper aims to suggest the water curtain installation guideline for prevention of fire spread. The water curtain systems play a role in preventing fire spread which is caused by fire flames and radiation heat release from a fire source. The radiation attenuation ratio is affected by the water droplet size, vertical distance from the nozzle and flow rate. This study suggests the water curtain installation guideline as follows : (1) Investigation of a reference store array (2) Calculation of the number of drencher heads (3) Review of the relationship between droplet size and attenuation factor depending on the height of the drencher head (4) Review of a drencher head array and spray overlapping. The reference traditional market in which a fire compartment is installed using a water curtain can be predicted to have a radiation attenuation ratio of 50%.

A Fire Scenario for Application of Water Mist System to an Indoor Power Transformer Room (변전소 주변압기실 미분무수 소화시스템 성능평가를 위한 화재시나리오)

  • Choi Byung-Il;Han Yong-Shik;Kim Myung-Bae
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.52-57
    • /
    • 2005
  • It has been known that there is not the general design method for water mist system because the fire extinguishing mechanisms are dependent on both spray characteristics and a fire compartment. It is therefore rational that a general performance-evaluation guideline does not exist. The present work suggests the performance-evaluation guideline for water mist system applied to the power transformer room based upon the investigation and analysis of fire accidents and the similar guideline.

A Study on the Correlation of Analysis between Flashover and Smoke Production Rate in Building Structure (건축구조물에 있어서 플래시오버와 연기발생량의 상관관계 분석에 관한 연구)

  • Seo, Dong-Goo;Kim, Dong-Eun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.236-237
    • /
    • 2013
  • The fire safety design of performance is fire behavior inside buildings must be scientifically described and systemized as a theory, thereby allowing application to fire safety design of buildings. In this study, experiment of fire behavior according to disposition of combustibles were performed for correlation analysis between flashover and smoke production rate in building structure. As a result, smoke production rates is happened more than 80 m2/s in compartment(ISO 9705). Also, even if the fire load for flashover to if occur smoke did not, which confirmed that the delay time of occurrence.

  • PDF