• 제목/요약/키워드: finite volume method

검색결과 1,412건 처리시간 0.035초

유한체적법을 이용한 업셋터 단조공정의 컴퓨터 시뮬레이션 (Computer Simulation of Upsetter Forging Processes that uses Finite Volume Method)

  • 김홍태;박성용;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.170-175
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method for simulation of upsetter forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

  • PDF

Finite volumes vs finite elements. There is a choice

  • Demirdzic, Ismet
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.5-28
    • /
    • 2020
  • Despite a widely-held belief that the finite element method is the method for the solution of solid mechanics problems, which has for 30 years dissuaded solid mechanics scientists from paying any attention to the finite volume method, it is argued that finite volume methods can be a viable alternative. It is shown that it is simple to understand and implement, strongly conservative, memory efficient, and directly applicable to nonlinear problems. A number of examples are presented and, when available, comparison with finite element methods is made, showing that finite volume methods can be not only equal to, but outperform finite element methods for many applications.

유한체적법에 근거한 단조공정 시뮬레이터를 이용한 난형상 열간단조 공정의 컴퓨터 시뮬레이션 (Computer Simulation of Complex Hot Forging Processes by a Forging Simulator Based on Finite Volume Method)

  • 김홍태;엄재근;최인수;이민철;박성용;전만수
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.187-192
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method fur simulation of complex hot forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

후방 충격압출 성형 공정의 FVM과 FEM의 적용성에 관한 연구 (A Study on the comparison of FEM and FEM for Backward Impact Extrusion Process)

  • 정상원;조규종;김성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1565-1568
    • /
    • 2003
  • The backward extrusion process is one of the commonly used metal forming processes. In this paper. a battery case which has the rectangular section, is analyzed using a 3D metal forming package(MSC.Superforge). This pacakge uses the finite volume analysis method. It is shown that the MSC.Superforge package using finite volume method provides result very close to those obtained from a finite element analysis package(MSC.Superform). However, the simulation time using the finite volume method was almost 10 % of the simulation time consumed by the other package using finite element method. Moreover, the finite volume method used in MSC.Superforge can eliminate the remeshing problems that make the simulating a metal forming process with severe deformation, such as the extrusion process, so difficult.

  • PDF

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

MIXED FINITE VOLUME METHOD ON NON-STAGGERED GRIDS FOR THE SIGNORINI PROBLEM

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.249-260
    • /
    • 2008
  • In this work we propose a mixed finite volume method for the Signorini problem which are based on the idea of Keller's finite volume box method. The triangulation may consist of both triangles and quadrilaterals. We choose the first-order nonconforming space for the scalar approximation and the lowest-order Raviart-Thomas vector space for the vector approximation. It will be shown that our mixed finite volume method is equivalent to the standard nonconforming finite element method for the scalar variable with a slightly modified right-hand side, which are crucially used in a priori error analysis.

  • PDF

MULTIGRID CONVERGENCE THEORY FOR FINITE ELEMENT/FINITE VOLUME METHOD FOR ELLIPTIC PROBLEMS:A SURVEY

  • Kwak, Do-Y.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권2호
    • /
    • pp.69-79
    • /
    • 2008
  • Multigrid methods finite element/finite volume methods and their convergence properties are reviewed in a general setting. Some early theoretical results in simple finite element methods in variational setting method are given and extension to nonnested-noninherited forms are presented. Finally, the parallel theory for nonconforming element[13] and for cell centered finite difference methods [15, 23] are discussed.

  • PDF

Comparing Two Approaches of Analyzing Mixed Finite Volume Methods

  • Chou, So-Hsiang;Tang, Shengrong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제5권1호
    • /
    • pp.55-78
    • /
    • 2001
  • Given the anisotropic Poisson equation $-{\nabla}{\cdot}{\mathcal{K}}{\nabla}p=f$, one can convert it into a system of two first order PDEs: the Darcy law for the flux $u=-{\mathcal{K}{\nabla}p$ and conservation of mass ${\nabla}{\cdot}u=f$. A very natural mixed finite volume method for this system is to seek the pressure in the nonconforming P1 space and the Darcy velocity in the lowest order Raviart-Thomas space. The equations for these variables are obtained by integrating the two first order systems over the triangular volumes. In this paper we show that such a method is really a standard finite element method with local recovery of the flux in disguise. As a consequence, we compare two approaches in analyzing finite volume methods (FVM) and shed light on the proper way of analyzing non co-volume type of FVM. Numerical results for Dirichlet and Neumann problems are included.

  • PDF

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산 (FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD)

  • 안형택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF