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ABSTRACT. Multigrid methods finite element/finite volume methods and their convergence
properties are reviewed in a general setting. Some early theoretical results in simple finite ele-
ment methods in variational setting method are given and extension to nonnested-noninherited
forms are presented. Finally, the parallel theory for nonconforming element[13] and for cell
centered finite difference methods [15, 23] are discussed.

1. INTRODUCTION

In this survey article, we discuss various multigrid methods finite element/finite volume
methods and their convergence propoerties. Multigrid methods have been very active area of
research since it was introduced in 1960’s[19]. It is one of the most efficient algorithm for
solving system of linear equations; especially for elliptic problems. In this article, we review
the methods in a more general setting. Some early theoretical results in simple finite difference
method are given in [2, 18, 20] and for a finite element setting Bank [1] has given a nice proof
and Brandt gave an extensive experiment including nonlinear problem, eigenvalue problem,
non elliptic problems and/or applications such as image processing. For other cases, we refer
to [11, 4, 16, 17, 21, 23, 24]. An excellent theory for conforming finite element method is
arranged in the series of paper by Bramble et. al.[5, 6, 7, 9, 8, 3]. Finally, the parallel theory
for nonconforming elements[13] and for cell centered finite difference methods [15, 23] are
discussed.

2. MULTIGRID ALGORITHM

We consider the following problem:

Lu = f in Ω
u = 0 on ∂Ω,

(1)

where Ω is a polygonal domain and L is a uniformly elliptic partial differential operator given
by Lu = −∇ ·K∇u and f ∈ L2(Ω). To discretize it we assume we have a sequence of finite
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dimensional space Mk, k = 1, · · · , J with the equipped inner product (·, ·)k which may or may
not be a subspace of H1

0 (Ω). As a result, we obtain the following algebraic equation:

Akxk = fk. (2)

We introduce a discrete Galerkin form

(Akxk, v)k = (fk, v)k, v ∈ Mk. (3)

To accomplish the philosophy of multigrid idea, we also assume prolongation operator Ik :
Mk−1 → Mk is given and its adjoint P 0

k−1 is defined by

(P 0
k−1xk, φ)k−1 = (xk, Ikφ)k, xk ∈ Mk, φ ∈ Mk−1. (4)

For each level, we need to relax the residual by a smoother Rk : Mk → Mk, for k =
2, · · · , J . We take R1 = A−1

1 and we only consider the case Rk is symmetric; for nonsymmet-
ric case, see [7].
MULTIGRID ALGORITHM.

Let yk be an approximation to the solution of Akxk = fk, we first define B1(y1, f1) =
A−1

1 f1. For k > 1 define Bk(yk, fk) recursively

(1) Set x0
k = 0, q0 = 0.

(2) x`
k = x`−1

k + Rk(fk −Akx
`−1
k ), ` = 1, 2, · · · ,m.

(3) xm+1
k = xm

k + Ikq
p, p = 1, 2 where

qi = qi−1 + Bk−1(0, P 0
k−1[fk −Akx

m −Akq
i−1]).

(4) x`
k = x`−1

k + Rk(fk −Akx
`−1
k ), ` = m + 2, · · · , 2m + 1

(5) Set Bk(yk, fk) = x2m+1
k .

When p = 1 it is a V−cycle, and when p = 2 it is a W−cycle. Then it is easy to see that

qp = (I − Ik(I −Bk−1Ak−1)p)A−1
k−1P

0
k−1Ak(xk − xm

k ). (5)

We shall derive a recurrence relation for I − BkAk. Let Kk = I − RkAk. First letting
Pk−1 = A−1

k−1P
0
k−1Ak, we have

xk − xm+1
k = xk − xm

k − qp

= (I − IkBk−1Ak−1)pA−1
k−1P

0
k−1Ak(xk − xm

k )

= (I − IkBk−1Ak−1)pPk−1K
m
k xk

on Mk. Then

xk − x2m+1
k = Km

k (x− xm+1
k ) = Km

k (I − IkBk−1Ak−1)pPk−1K
m
k xk

= Km
k [I − IkPk−1 + Ik(I −Bk−1Ak−1)p]Pk−1K

m
k xk

so that
I −BkAk = Km

k [I − IkPk−1 + Ik(I −Bk−1Ak−1)p]Pk−1K
m
k .
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3. CONVERGENCE THEORY FOR THE CONFORMING FINITE ELEMENT METHOD

In this section, we assume the space Mk consists of continuous functions which are piece-
wise linear on each element(triangles or rectangles) where each element in τk is divided by
connecting mid point of its side to produce elements in τk+1 so that all the spaces Mk are
nested. Hence the transfer operator Ik is the natural injection operator. Also, let

a(u, v) =
∫

Ω
K∇u · ∇v dx = (f, v), v ∈ H1

0 (Ω)

be the usual variational formulation. Obviously the following is satisfied:
(A.0): (AkIku, Iku) = (Ak−1u, u), u ∈ Mk−1.

The convergence proof in this case is based on the following assumptions.
(A.1): There exists some 0 < α ≤ 1 such that

A((I − Pk−1)u, u) ≤ C2
α

(‖Aku‖2
k

λk

)α

A(u, u)1−α for all u ∈ Mk,

(A.2): ‖u‖2k
λk

≤ CR(Rku, u)k, for all u ∈ Mk,

where λk is the largest eigenvalue of Ak. The following result is in [5].

Theorem 3.1. Let p = 1 and m = constant. Then

A((I −Bs
kAk)u, u) ≤ δkA(u, u),

with δk = Cα,k

Cα,k+mα .

This result can be improved if we use a product form of multigrid algorithm: We first con-
sider presmoothing only with p = 1. Then

(I −Bn
k Ak) = [(I − Pk−1) + (I −Bn

k−1Ak−1)Pk−1]Km
k on Mk.

For the improvement of result, we derive a recursive relation: Let Tk = (I−Km
k )Pk. Then we

have

I −Bn
k AkPk = [I −Bn

k−1Ak−1Pk−1](I − Tk).

The corresponding relation for symmetric smoother(with postsmoothing also) is given by

(I −Bs
kAk) = Km

k [(I − Pk−1) + (I −Bn
k−1Ak−1)pPk−1]Km

k on Mk

so that
(I −Bs

JAJ) = (I −Bn
JAJ)∗(I −Bn

JAJ). (6)

Then we have the following result.

Theorem 3.2. [8]The V-cycle converges with δJ = 1 − 1
CJ , with no regularity assumptions

other than H1.
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Proof. For the proof, we use

(I −Bn
JAJ) = (I − TJ) · · · (I − T0)

Ek = (I − Tk)Ek−1, EJ = (I −BJAJ)

and the following assumptions:

(A.3): There exists Qk : MJ → Mk such that

‖(Qk −Qk−1u‖2
k ≤ C1λ

−1
k A((u, u), k = 1, · · · , J

(A.4): A(Qku,Qku) ≤ C2A(u, u)k, k = 1, · · · , J.

¤

With a more ingenuous analysis shows the convergence can be further improved where the
convergence rate is independent of the number of levels:

Theorem 3.3. [3] Let u ∈ H1+α(Ω) with α > 0. Then the V-cycle with one smoothing
converges with δJ = 1− 1

C .

4. NONNESTED SPACE OR NONINHERITED FORMS.

In the case of nonconforming finite element where Mk 6⊂ H1
0 (Ω) or finite difference meth-

ods we usually do not have ‘variational equality’, i.e, the following

Ak(Iku, Ikv) = Ak−1(u, v), u, v ∈ Mk−1

do not hold. This also happens when treating curved boundaries with straight edged element.
The recurrence relation becomes

I −BkAk = Km
k [(I − IkPk−1) + Ik(I −Bk−1Ak−1)pPk−1]Km

k .

Now the condition (A.0), (A.1) have to be replaced by

(B.0): Ak(Iku, Iku) ≤ C∗Ak−1(u, u), u ∈ Mk−1.

(B.1): A((I − IkPk−1)u, u) ≤ C2
α

(‖Aku‖2k
λk

)α
A(u, u)1−α, u ∈ Mk.

The typical finite difference method applied to the Laplace operator with linear or bilinear
element give rise to a bilinear form which satisfy (B.0) with C∗ = 1. In this case, we have
V -cycle result.

Theorem 4.1. If C∗ ≤ 1, then the multigrid V -cycle algorithm converges with δk = C(α,k)
C(α,k)+mα .

W-cycle result
For general elliptic problem, however, FDM does not yields C∗ = 1. In most cases C∗ is

strictly greater than 1. The same is true for nonconforming finite element. For these cases, we
need to use p = 2(W-cycle).
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Theorem 4.2. Assume (B.0) and (B.1) hold and p = 2. Then if m is sufficiently large we have
δk = C

C+m(k)α . If in addition,

Ak(Iku, Iku) ≤ 2Ak−1(u, u)

holds then the W-cycle algorithm converge with the same δ with m = 1.

Nonconforming Elements. For various nonconforming elements even C∗ ≤ 2 do not holds
generally. Thus, we investigate specific case in detail. Let Vk, k = 1, · · · , J denote the non-
conforming finite element spaces. The variational for usually satisfies

ak(Ikv, Ikv) ≤ C∗ak−1(v, v), ∀ v ∈ Vk−1, (7)

for some constant C. For triangular nonconforming element, it is known that C∗ > 2. Hence
W–cycle with large m only converges. However, for rectangular case, we have convergence
for m = 1.

Theorem 4.3. [12] The following estimate holds

ak(Ikv, Ikv) ≤ 2ak−1(v, v), ∀v ∈ Vk−1

and thus the W-cycle converges with m = 1.

Cell Centered Method. Similar framework can be used to prove convergence of multigrid
applied to the cell centered finite difference. First consider the following model problem:

−∇ · p∇ũ = f in Ω, (8)
ũ = 0 on ∂Ω. (9)

Integrating by parts on each cell, we obtain

−
∫

∂Ek
ij

p
∂ũ

∂n
ds =

∫

Ek
ij

fdx (10)

for i, j = 1, . . . , n. We approximate (10) by

p∂ũ/∂n ≈ pi,j+1/2
ui,j+1 − ui,j

h

to obtain a system of linear equation of the form

Ākū = f̄ , (11)

whose multgrid method was first considered in [4]. However, they used a natural operator
whose V−convergence is very slow. In fact, they show

A(In
k v, In

k v) = 2A(v, v)
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and, hence, only W -cycle works. However, we can design a new prolongation operator and
improve the energy norm. Define a weighted prolongation operator Ik

k−1 as follows:

(Ik
k−1v)I,J =

1
4
(2vi,j + vi,j+1 + vi+1,j),

(Ik
k−1v)I−1,J =

1
4
(2vi,j + vi,j+1 + vi−1,j),

(Ik
k−1v)I,J−1 =

1
4
(2vi,j + vi+1,j + vi,j−1),

(Ik
k−1v)I−1,J−1 =

1
4
(2vi,j + vi−1,j + vi,j−1).

We can now prove the following crucial energy norm estimate.

Proposition 1. For all v ∈ Vk−1, we have

Ak(Ik
k−1v, Ik

k−1v) ≤ C(p)Ak−1(v, v), (12)

where C(p) = 1 if the coefficient p is constant and C(p) = 1+O(hk) if p is a general Lipschitz
continuous function.

Lemma 4.1. Regularity and approximation property holds for α = 1
2 .

With these preparations, we prove the following: [15]

Theorem 4.4. With Ek = I − BkAk, we have the following: If p is constant, then V−cycle
converges and we have

0 ≤ Ak(Eku, u) ≤ δkAk(u, u) ∀u ∈ Vk (13)

where δk = Ck
Ck+

√
m

.

Triangular case. Similar idea can be used to design the prolongation operator for triangular
element: Observe

Ak−1(v, v) = θ
∑

i6=j

(vi − vj)2, (14)

where the sum is taken for all pairs of adjacent triangles i and j. Let u = It
kv. Then

Ak(u, u) = θ
∑

I 6=J

(uI − uJ)2. (15)

If we define Ik to be certain average, it can be shown that

Ak(It
kv, It

kv) = 2θ
∑

i6=j

(vi − vj)2.

We find that the result does not change even if we change the weight as long as the sum of
coefficients is 1. For details, see [25].
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5. SOME V−CYCLE THEORY FOR THE NONCONFORMING CASE

The V−cycle convergence with the nonconforming element has been computationally ob-
served but the proof seemed to be an open problem for a while. It was partially resolved by
Chen and later Chen and Kwak[13] with no regularity assumption.

The obstacle of the convergence proof is that we have C∗ > 1 in (7). The idea is to judi-
ciously introduce a new bilinear form so that (7) holds with C∗ = 1.

Given finite element spaces
V0, V1, . . . , VJ ,

and coarse-to-fine grid operators Ik : Vk−1 → Vk for k = 1, . . . , J .
Assume a quadratic forms aJ(·, ·) on VJ × VJ and define the iterates HJ

k = IJ · · · Ik+1 :
Vk → VJ , of Ik and their adjoint Λk

J by

HJ
k = IJ · · · Ik+1 : Vk → VJ , k = 0, . . . , J − 1, (16)

ak(Λk
Jv, w) = aJ(v, HJ

k w), k = 0, . . . , J. (17)

Using aJ form, we define new quadratic forms bk(·, ·) on Vk × Vk by

bk(v, w) = aJ(HJ
k v, HJ

k w), ∀v, w ∈ Vk, k = 0, . . . , J.

If we let
(Akv, w)k = bk(v, w), ∀ w ∈ Vk, k = 0, . . . , J,

then we have

(AkIkv, Ikv) = bk(Ikv, Ikv)

= aJ(HJ
k Ikv, HJ

k Ikv)

= aJ(HJ
k−1v, HJ

k−1v)
= bk−1(v, v)
= (Ak−1v, v).

Theorem 5.1 (Chen 96). With certain regularity V-cycle MG for nonconforming element con-
verges with δk = Cα

Cα+mα .

Sketch of proof: We define the operators Pk−1 : Vk → Vk−1 and P 0
k−1 : Vk → Vk−1 by

bk−1(Pk−1v, w) = bk(v, Ikw), ∀ w ∈ Vk−1, k = 1, . . . , J,

and (
P 0

k−1v, w
)
k−1

= (v, Ikw)k, ∀ w ∈ Vk−1, k = 1, . . . , J.

As usual, we need ”approx. Regularity” for bk(·, ·) form:

|(Ak(I − IkPk−1)v, v)k| ≤ Chk‖Akv‖k‖v‖1,k (18)

For a proof, we need properties of a(P̄k−1v, w) = bk(v, Ikw) and the following lemma.
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Lemma 5.1.

C1‖v‖E,k ≤ ‖v‖1,k ≤ C2‖v‖E,k

‖Λk
Jv‖E,k ≤ C‖v‖E,k

‖v −HH
k v‖ ≤ Chk‖v‖E,k.

This result works for smooth problem. The case of rough coefficients with only one smooth-
ing is provided below.

Theorem 5.2 (Chen, Kwak 96). (No regularity) For problems with large jump coefficients,
V-cycle multigrid with one smoothing converges with δ = 1− 1

CJ .

For the proof, we have to resort to the product algorithm introduced in section 3. For that
purpose we need several new operators. First define Πk

J : VJ → Vk by

bk(Πk
Jv, w) = bJ(v, HJ

k w), v ∈ Vj , w ∈ Vk.

Then the following properties hold.

Lemma 5.2. It holds that

P 0
k−1Ak = Ak−1Pk−1, (19)

Pk−1Ik = I on Vk−1. (20)

Lemma 5.3. We have
Πk−1

J = Pk−1Πk
J .

Πk
J = PkPk+1 . . . PJ−1;

Πk
JHJ

k = I on Vk.

With the iterated transfer operators HJ
k and Πk

J let Sk = HJ
k (I − J

m(k)
k )Πk

J . Then we have

I −HJ
k Bn

k AkΠk
J = (I −HJ

k−1B
n
k−1Ak−1Πk−1

J )(I − Sk).

Therefore, by induction we obtain

I −Bn
JAJ = (I − S0) . . . (I − SJ).

Denote the norm induced by the ak form by ‖ · ‖E,k. It has been shown [12] that the norms
‖ · ‖E,k and ‖ · ‖1,k are equivalent:

C5‖v‖E,k ≤ ‖v‖1,k ≤ C6‖v‖E,k, ∀v ∈ Vk, k = 0, . . . , J, (21)

with C5 and C6 independent of k . Assume the existence of Qk
J : VJ → Vk such that Qk

JHJ
k v =

v and
‖Qk

Jv‖1,k ≤ C‖v‖1,J .

Later, Qk
J will be given as a product of certain projection operators Tk.
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Lemma 5.4. There exist constants C independent of k such that

‖Qk
Jv‖E,k ≤ C‖v‖E,J , ∀v ∈ VJ , (22)

‖Tk−1v‖E,k−1 ≤ C‖v‖E,k, ∀v ∈ Vk. (23)

Now we apply product form of multigrid algorithm: For that purpose, we need to verify two
conditions:

‖(Qk
J − IkQ

k−1
J )v‖2

k ≤ C1λ
−1
k bJ(v, v), k = 1, · · · , J, (24)

bk(Qk
Jv, Qk

Jv) ≤ C2bJ(v, v), k = 0, · · · , J − 1. (25)

(25) follows from (22); To prove (24), observe that

Qk
J − IkQ

k−1
J = (I − IkTk−1)Qk

J .

By approximation properties of Ik and Tk−1

‖(Qk
J − IkQ

k−1
J )v‖k = ‖(I − IkTk−1)Qk

Jv‖
≤ C

(‖(I − Tk−1)Qk
Jv‖+ ‖(I − Ik)Tk−1Q

k
Jv‖)

≤ Chk‖v‖E,J , v ∈ VJ .

This, together with (21), implies the assumption (24). With these preparations, we can prove
the result using similar frame in section 3.

Remark 5.1. Similar result holds for nonsymmetric problem[14].

Properties of transfer operator. First we consider triangular nonconforming element. We
consider two sets of intergrid transfer operators Ik : Vk−1 → Vk and Tk−1 : Vk → Vk−1 as
follows.

(Ikv) (q) =





0 if q ∈ Γ,
v(q) if q 6∈ ∂E for any E ∈ Ek−1,
1
2 {v|E1(q) + v|E2(q)} if q ∈ ∂E1 ∩ ∂E2.

If v ∈ Vk and q is the midpoint of an edge e of a triangle in Ek−1, following [12], we define
Tk−1v ∈ Vk−1 by

(Tk−1v) (q) =
1
2
(v(q1) + v(q2)),

where q1 and q2 are the respective midpoints of the edges e1 and e2 in Ek, which form the edge
e in Ek−1. Note that the definition of Tk−1 automatically preserves the zero nodal values on
boundary edges. Also, it can be seen that

Tk−1Ikv = v, v ∈ Vk−1, k = 1, . . . , J. (26)

As in [12], the iterated intergrid transfer operators

HJ
k = IJ · · · Ik+1 : Vk → VJ , k = 0, . . . , J − 1, (27)

Qk
J = Tk · · ·TJ−1 : VJ → Vk, k = 0, . . . , J. (28)
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satisfies
Qk

JHJ
k v = v, v ∈ Vk.

Similar result holds in the case of the Q1-nonconforming element.

Remark 5.2. Finally, one can consider a perturbed problem. Perturbation comes from a va-
riety of sources: Nonsymmetric term, numerical integration, finite difference methods, treating
curved boundaries, nonconforming element, etc. These cases can be handled almost univer-
sally by introducing certain perturbed bilinear form and estimating the energy norm appropri-
ately and W− cycle can be shown to converge if the unperturbed problem converge. See [22]
for details.
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