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A STABILIZED CHARACTERISTIC FINITE VOLUME
METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS
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ABSTRACT. In this work, a stabilized characteristic finite volume method
for the time-dependent Navier-Stokes equations is investigated based on
the lowest equal-order finite element pair. The temporal differentiation
and advection term are dealt with by characteristic scheme. Stability of
the numerical solution is derived under some regularity assumptions. Op-
timal error estimates of the velocity and pressure are obtained by using the
relationship between the finite volume and finite element methods.
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1. Introduction

In this paper, we consider the accuracy of stabilized characteristic finite vol-
ume method for the Navier-Stokes problem: Find (u, p) such that

ur+(u-Viu—vAu+Vp=f, divu=0 in Q x (0,7],
u=0 on 02 x (0,77, (1.1)
u = ug on 2 x {0},

where u = (uy,us)? is the velocity and p = p(z,t) the pressure, f = f(z,t) the
prescribed body force, v > 0 the viscosity, ug the initial velocity, T the given
final time and u; = %‘t‘.

Finite volume method (FVM) has a long history as a kinds of numerical
methods for the differential equations, this method has been also termed as
box scheme [2], generalized finite difference method [19]. FVM is a numerical
technique that lies somewhere between the finite element and finite difference
methods. It has a flexibility similar to that of the finite element method for

handling complicated geometries, and its implementation is comparable to that
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of the finite difference method. Therefore, FVM has been widely used in com-
putational fluid mechanics [5, 6]. However, the theoretical analysis of FVM lags
far behind that of finite element and finite difference methods, we can refer to
[11, 12, 15] for some recent developments.

On the other hand, the non-stationary Navier-Stokes problem has some hy-
perbolic nature at high Reynolds numbers, therefore, constructing an appropri-
ate numerical method to solve such problem is very important in mathematics
and mechanics. Characteristic method is an efficient scheme for the convection
dominate problem. Many researchers have studied the transient Navier-Stokes
equations with characteristic method and obtained some important results. For
example, Pironneau investigated the Navier-Stokes problem by applying the
characteristic scheme in [23] and provided the suboptimal convergence analy-
sis. After then, Sili [24] improved the results of [23] and presented the optimal
error estimates for the approximate solutions. Under some restriction about
time step, Boukir et al. gave the stability and error estimates for the veloc-
ity and pressure by combining the characteristic method and second-order time
scheme in [4]. For more literature about the characteristic method, we can refer
to [1, 22, 26] and the references therein.

In this work, we combine the characteristic finite volume method with the
unstable P;-P; element to solve the transient Navier-Stokes problem, optimal
error estimates for the numerical solutions are established. This paper is orga-
nized as follows. In Section 2, we introduce some notations and formulate the
stabilized FVM approximations for the problem (1.1). Stability of the approxi-
mate solutions is presented in Sections 3. Section 4 is devoted to establish the
optimal order estimates for the numerical solutions.

2. Preliminaries

2.1. Basic notation. Standard notations for the Sobolev spaces W*#?(Q)", (r =
1,2) and the associated norms and seminorms are adopted in this paper. We set
(-,-) and || - |0 are the inner product and norm on L?(2) or L?(Q)2. The space
HY(Q)!(i = 1,2) is equipped with the scalar product and norm: (Vu, Vv) and
lulf = (Vu, Vu), Y u,v € H}(Q)'(i = 1,2).
In order to present the variational formulation for (1.1), let
X =H;(Q)?, Y =1%Q)?% D(A)=H*(Q)?*NX,
M =L35(Q) ={qe L*Q): / qdx = 0}.
Q

Set Au = —Auw, which is a positive self-adjoint operator from D(A) onto Y. In
particular, D(Az) = X, D(A%) =Y. If Q2 is of C2 or Q is a two-dimensional
convex polygon, there hold [7]:

[vllo <7ollvlly, VoeX; [olli <llAvlo, Vve DA, (2.1)

where 7 is a positive constant only depending on ).
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Let H=! be a dual, with respect to L?-duality, space to H} with the corre-
sponding norm:

lloi= sup 2%

, feH.
0AuEH} uly

We assume that the data ug, f satisfy the following assumption [13]:
(A1) wug € D(A) with divug = 0 and f, f; € L?(0,T;Y). Moreover

[uoll2 + sup {[|fllo + [ fllo} < C.
t€[0,T)

Here and hereafter, the letter C' denotes a generic positive constant which is
independent of the parameters h and At, and maybe different at its different
occurrences.
Let
(e t) = (14 [uf*)7,
where |u|? = u? + u3. The characteristic direction corresponding to the hyper-
bolic part of (1.1), us + (u - V)u, be denoted by 7, so
0 1 0 1
— = = - V.
or W@ ot pa"
With this definition, the equations (1.1) can be put in the form
w(x,t)% —vAu+Vp=f, divu=0 in Q x (0,7,
u=0 on 0 x (0,77, (2.2)
u = ug on 2 x {0}.

The continuous bilinear forms a(-,-) and d(,-) on X x X and X x M are,
respectively, defined by

a(u,v) = v(Vu, V), d(v,q) = —(Va,v) = (g, divo).
Moreover, the generalized bilinear form on (X, M) x (X, M) is given by
Bo((u,p); (v,9)) = a(u,v) — d(v,p) + d(u, q).

With notations above, the variational formulation of problem (2.2) is to seek
(u,p) € (X, M), for all ¢t € (0,T1], such that

(
{ (1/)(I,t)%,l)) +BO((U7P); (an)) = (fa U)a v (an) € (Xv M)a

u(0) = wp. (23)

As for the existence uniqueness and regularity of the global solution to the
transient Navier-Stokes problem, we have

Lemma 2.1 ([17]). Assume that 98 is of C* or Q is a two-dimensional convex
polygon and (A1) holds. Then, for any given f € L*(0,T;L*(Q)?), problem
(1.1) admits a unique solution (u,p) satisfying the following regularities:

sup ([lug ()13 + [[Au(®)[l5 + lp(®)[I}) < C,
0<t<T
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T
sup U(t)l\ut(t)ller/ o (&) (lure(O1F + [ Au O + lpe(B)[I)dt < C,
0<t<T 0

where o(t) = min{1, t}.

2.2. The stabilized finite volume method. Let 7, = {K} be a regular
trianglations (see [9]) of © with mesh size h > 0. P is the set containing all the
interior nodes associated with the triangulation 7;,. N be the total number of the
nodes. To define the finite volume method, a dual mesh 7~71 is introduced based
on 7Ty, and the elements in 7~7L are called control volumes. The dual mesh can be
constructed in this way: for each element K € 7T, with vertices P;(j = 1,2, 3),
select its barycenter O and the midpoint ¢); on each of the edges of K and

construct the control volumes in 7, by connecting O to ;. This work focuses
on the analysis of the lowest equal-order mixed finite element pair

Xn = {U e X: Ui|K EPl(K),VKGE,Z. = 1,2},
and
M, ={q€ M : q|k € P\(K),VK € T}

where P;(K) represents the set of all linear polynomials on K. The dual finite
element space is defined by

Xy = {v€ L2 : 0|z € Po(K),¥K € Tp; 0|z =0.
on any boundary dual element K 1,

Obviously, the dimensions of XhNand )A(:h are the same. There exists an in-
vertible linear mapping I'y, : X, — X, satisfying the following lemma.

Lemma 2.2 ([8, 21]). Let K € Ty, if vp, € Xj, and 1 <r < co. Then

/ (on — Thon)dz =0, [lon — Thvnll i (sey < Chaclonllwr iy
K

where hy is the diameter of the element K. It is well known that the choice
of the Py-Py element violates the so-called Inf-Sup condition [25]. However, we
can overcome this restriction by adding a simple and effective stabilization term
G(-,-), which is defined as follows. LetIl : M — Ry be the standard L?-projection
with the following properties [20]

(p—Tp,gn) = 0, [Tpllo < Cllpllo, V¥ p € M,qn € Ro;
lp = Tpllo < Chliplly, ¥ p € H ()N M,

where Ry = {qn € M, qn|k is a constant, ¥V K € Tp}. Then, we can define the
stabilization term G(-,-) by [3]

G(p,q) = (I =Mp, (I —=M)q) VY p,q € L*(Q).
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We denote the discrete norm |||upl||2 = (un,Thun), ¥ up,vn € Xp, and this
discrete norm is equivalent to the standard L*-norm [19]: there exist two positive
constants C,, C*, such that

Cullunllo < [lfunlllo < C*[lualo- (2.4)

Lemma 2.3 ([12]). For all up,vy, € X}, it holds that
(un, Thon) = (vn, Chun).

With the help of the Green’s formula, the stabilized finite volume method for
problem (1.1) reads: find (up,prn) € (Xn, Mp), Y(vn,qn) € (Xn, Mp) such that

(une, Thon) + A(up, Trop) + D(Tpvn, pr) + d(un, qn)

+b(un, un, Tnon) + G(pn, qn) = (f, Thon), (2.5)
up(0) = uop,
where
N ou
A(uh,Fhvh) = — ’Uh(P*)/ Jd.’L‘, Up, U € Xp,
JZ_; 7 Jok, On

N
D(Tyvn,pn) = th(Pj)/~ pnndx, pn € Mp,
o oK

N
I = P; d X
(f,Thon) ;’Uh( ])/f(jf x, vy € Xy

The following lemma establishes the relationship between the finite element and
finite volume methods for the Navier-Stokes equations.

Lemma 2.4 ([18, 27]). It holds that
A(up,Thop) = a(up, vp), Y up, v, € Xp.
Moreover, the bilinear form D(-,-) satisfies
D(qn,Tnon) = —d(qn,vn), V¥ (vn,qn) € (Xn, Mp).

We denote By((un,pn), (Tnvn,qn)) = A(un,Tron) + D(Tnvn, pr) + d(un, qn) +
G(pn,qn), then, the following lemma establishes the continuity and weak coer-

civity for Bp((un,pn), (vn,qn))-
Lemma 2.5 ([18]). It holds that for all (up,pr) € (Xpn, Mp)

| Br((un, pn)s (Thvn, gn))| < Clunli + llpnllo) (lonlr + llgnllo)
V (v, qn) € (Xn, My).
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Moreover,

sup | By ((wn, pn): (Thvn, qn))|
0% (vh,qn) €(Xn,Mp) lvnl1 + llgnllo

Let (u,p) and (un,pn) be the solutions of problems (1.1) and (2.5). By using the
techniques to one used in [15, 16], we can obtain the reqularity results.

> B(lunlr + [[pallo)-

Lemma 2.6. Under the assumptions of Lemma 2.1, for all t € [0,T), the
numerical solution (up,pr) of (2.5) satisfies

i
lun13 < € (Jluollf +05%C%), = / " lup[3ds < C.

t
IVl e e (ot =l + v = ) s < O
where g = ﬁ7 Cy = sup;> | f()]-

3. Stabilized characteristic finite volume method

We consider a time step At and approximate the solution at t™ = nAt,n =
1,2,...,N,At = % The characteristic derivative is approximated in the follow-
ing way at t =t"

ou u(z, t") —u(@, ") un —ant

(’(ﬁ((b,t)g)" ~ ’(ﬁ(!ﬁ,ﬂ (.T — f)Q + At2 - At

Namely, a backtracking algorithm is used to approximate the characteristic de-
rivative. T = x — u(x,t")At is the foot (at level t"~!) of the characteristic
corresponding to x at the head (at level ™).

The stabilized characteristic finite volume method for problem (1.1) at t = "
reads: Find (u}},p}) € X}, x My, for all (v, qn) € Xp, X My, such that

n_gn—1 o
(=x— Thon) + Br((uy, py), Crhvn, qn)) = (f", Thon), (3.1)
u% = UQh-

We define a projection operator (Rp, Q) : (X, M) — (Xp, My) by
Bi((Rn(v, ), Qn(v,0)); (Cuvnsan) ) = Bo((0,0); (vnsan)),  (3:2)
V(”? q) € ('X7 M)7 (Uh7 Qh) € (Xha Mh)7
Noting that due to Lemmas 2.4 and 2.5, (Rp, Q) is well defined and satisfies
the following approximate properties.
Lemma 3.1. Under the assumptions of Lemma 2.1, the projection operator
(Rh(uvp)th(uap)) SCLtiSﬁeS
lu = Rp(u, )l + llp = Qn(u, p)llo < C([Jully + [[pllo)-
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for all (v,q) € HE(Q)? x L3(Q) and

lu = R (u,p)llo + h(llu — Bu(u,p)ll + [lp = Qn(u, p)]lo) < Ch2([[Aullo + [Ipll1)-
for all (u,p) € D(A) x (H*(Q) N M).

Proof. The proof can be completed by using the techniques to one used in [14,
16]. Here, we omit it.

Owing to ug € D(A), we can define py € H*(Q) N L3(2) [17], and denote
(ton, pon) = (Ru(uo, o), @n(uo, po)). Furthermore, we set (ef!, ny) = (Rp,(u",p™)—
’LLZ', Qh(unapn) - pﬁ)

The following lemma can be found in reference [28]. O
Lemma 3.2. It holds that

(w,u) — (u,u) < CAt(u,u) VuelX,
where ©w = u(x — u(z, t)At).

Now, we present the stability of the numerical solutions for problem (3.1).

Theorem 3.3. Under the assumptions of Lemma 2.1, for 1 < n < N, the
solution (u},py) of (3.1) satisfies

N N
Il 3+ > IVuplBac+ > ppldat < ¢,

n=1 n=1

Proof. At t =t", choosing (vi, qn) = (u},py) in (3.1) and using the Lemma 2.4,
we get

—n—1

upy —u
(Fg— Dweii ) + vIIVuR I3 + G pi) = (7, D). (3:3)
Noting the definition of ||| - ||| and (2.4), applying Lemma 2.3, we have
1 n —n— n
A7 (Uh kU 17Fhuh>

1 n —n— n —n— n —n—
= 2At<uh -y, 1,Fh[(uh +ay, 1)—}— (up, —uy, 1)])

1 n n —n—1 —n—
E{(uhyuh) = (uy 17’% 1)}
_ 1 n o _n n—1 n—1 n—1 n—1 —n—1 —n—1
ST R R | (R R R [ SR C XY
For the right terms of (3.3), using the Young inequality, we have

|77, D] < ClLA lolluillo < S19wRl3 + o I1£7 13 (3:5)
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Substituting (3.4)-(3.5) into (3.3), using Lemma 3.2, multiplying by 2At and
summing n from 1 to NV, one gets

N N N
n n n 1 n n—
13+ 3 [VIVuRIE + i pi)] A < 2 S 177 I3A+ luonlf + Y A
n=1 n=1

n=1

Note that
luonllo = [[Br (v, po)llo < [luollo + [[uo — Rr(uo,po)llo < C(lluolls + lIpollo)-

Applying the discrete Gronwall inequality, we arrive at

N N
I 13+ v 3 IvugBae < (D0 I I3AL+ fuoll? +llpoll3).  (36)
n=1

n=1

Combining (3.1) with Lemma 2.5, we get

B((“Z7PZ); (Fhvh,%))’

B(Jufly +lIplo) < sup
(van) €(Xn. M) [vnl1 + llgnllo
"’7/,5”*1
‘(fnyrhvh)’ + ‘( N 7Fhvh)‘
< sup . (38.7)
(Vsqn) €(Xn,Mp) ‘Uhll + th”O

.. —n—1 n—1 n—1 —n—1
Writing u}l — %, " as a sum of two terms (u}} —wu,~ ")+ (u,”~ —u, ), thanks

to the results provided in [10] and Lemma 2.6, we have

un o ﬂn—l un - un—l un—l o ﬂn—l
( AL ’Fhvh) :( AL ’Fhvh>+< A ’Ph”h)
Cq _ _
< agllonllollur =y Hlo + Callvnllol| Vg~ o
Cp —sot” 3t™ ottt _
< A 0 lmllolle™  up —em =y Hlo + CallvnllolI Vg~ {lo
n Sot
s o) ]
< e ¥ unlo [ 1% ads + Calfonol 905 o
tn—
C1 —sot™ " 3ot do 5ot —
< S o [ [l + 2o punlods + Calln ol Ve
tn—
tn,
<

C1  =sgt™ ¢ 3 50 3
- ||vh||o[( [ e anlas) ([ e unlas)
At2 tn—1 2 tn—1

+Ca]lvnllol| Ve~ o

Combining above estimate with (3.7), squaring, multiplying by At¢, summing n
from 1 to N, using (2.1) and Lemma 2.6, we get

N N N
S lpidat < (DI IBAL + fuoll} +652C + 3 IVup3At).

n=1 n=1 n=1

Thanks to (3.6), we finish the proof. O
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4. Error estimates

This section is devoted to present the convergence analysis for the numerical
solution (u},py) of problem (3.1).

Theorem 4.1. Let (u,p) and (u},py) be the solutions of (2.3) and (3.1). Under
the assumptions of Lemma 3.1, for all 1 <n < N we have

N N
o) (D IV - up)Fat+o(t) > llo - phlEAt) < C(At+ 1),
n=1 n=1

Proof. This proof of Theorem 4.1 is consisted of Lemmas 3.1 and 4.2-4.3. O

Lemma 4.2. Under the assumptions of Theorem 4.1, the following error esti-
mate holds for 1 <n < N.

N
(1) (1leX I3 + D IVerli3at)
n=1
T 2 N N
0%u n _ n—
< cfar [T 1G5+ n (X 1rI3ar+ 67203+ X Ve Ae)
n=1 n=1
T
+h?Juoll3 + h* / (o(s) | Auel3 + | Auld + Ip|2)ds + h* (Al + Ip13)].

Proof. Subtracting (3.1) from (2.3) at ¢t = ™, thank to Lemma 2.4 and (3.2), we
get

eniénfl n o
(hTth’vh)+Bh((eh777h)a(vh7qh))
n 8 n n _ —=n—1 n _ —=n—1
= —(¥(,t") 812— - %ﬂ%)'ﬁ‘(%:vh_rhvh)
n—1 - R n—l7 n—1\y n_ R n7 n
+((u r(u D Ai) (u (U™, p ))7Uh)
—n—1 - R 7n—17 n—1 _ n—1 _ R n—l7 n—1
W@ RE YT <00 R
5
+(f,on —Thon) = Y _ T (4.1)

i=1
Choosing (vp, qn) = (e}, ny) and estimating the left terms of (4.1) by a(a—b) >
+(a® — b%), we have
el — Enfl n
(hTth’ er)

%

1 n2 —n—12
IAT llerllo — Ilen " llo
71 n n— n— —n—
= oy RIS — len™ I3 + lleh ™13 = 28], (4.2)
Bi((er,mi) (er,mn)) = vlIVerllo + Gni,mi)- (4.3)
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Using the results provided in [10, 24] and Lemma 2.2, for the right terms T1-T5
of (4.1), we have

out ut =gt n
71| < Clly(z,t )W - T”OH%”O
t" 2
o u v 9
< ont [ g+ Ives
|T < (uh_uz ! e" —T n) + (’LLZ 1_UZ ! n_ 1 n)
2|_ T7 h heh Taeh heh
Cl n—1 n n—1
< Ry IVeillollug =i lo + Cah|[Veqlol Ve~ o
Cih asoimiom o A n asn
< S b Ve ok uhfe%‘s "y lo + CahlIeRloll Vo
C’h a
< 1 251" Vep o / )||od8+CzhHV€h||0||Vu Hlo
Cih s . 8o
< Alt bl 7 / [ezéofnuhtuw 0 00 o]
+Cahl| Ve ol V™l
Cih Caggny 1 3 -
< ZEITeloe ([ e unlids) + CahlVeRlo| Vap o
02 —360t™ /tn Sot 2 3
+1Vee°( e’ ||u ds),
o7 lverl [ el
|T3| < *||(U" = Ry(u",p")) — ("t = Ry (u" ™, " 1))llolleh llo
||V€ ||0 n n ,n n— n— n— n—
< ol = Ra(u”,p") = o (") (W = Ra(a” ") o
Ato(tn)
C_ " 20— Riu.p))
< — ds - ||Vep
= Ato(t) /t, I ot lods - [IVerlo
C ¢ do(s
< o [ (= Rasta o + e = RaCwp)lla 5 )as- 19 o

Note that 0 < o(t) < ¢, df;sft) < 1(V ¢t > 0), the estimate of |T3| can be rewritten

as

C-||Vey ¢
o < SV [ (o~ Bustwsp)lods + u— B p)lo) s
tn—1
C "

(/: o (s)ue — Rht(%p)”%ds)é(lnl sds)é

Ato(t7)
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+(/tt ||uRh(u,p)||§ds)é(/t:nl lds)ﬂ AIverllo

C t" 1
< artog | (L 7Ol = B plias)
tn—
t" 1
([ = Raup)lds)” |- 19l
c "
< sz | ([ o) = Rustup)las)
" 14
([ Iu= Ruwplas) | + £z,
7517.71
C-||Vey - —n— n— n— n— n—
i = STt ) - (00— )|
-1
< Ol = Ru(u 10" ol Veg llo
n— — n— v n
< O = Ralw g R + VeI

IT5] < [ floller = Taexllo < ChllflloliVerllo-

Combining the above estimates with (4.1)-(4.3) and applying Lemma 3.2 yields

1 e v
o | IR 12 = e 13| + Z1IVeR I3 + G, i)
t" 2 t" n—12
0*u 1 le I
< C|At 2 1Pds + ——— — Rpi(u, p)||2d h__llo
< c|ar [ 15+ g [ ol = Rulp) s + 1
g3 / "= R, p)[2ds + w1 — Ry (L 5|2
Ato2(t7) Jins

n

N e
AR+ e [ e (unal + unl)ds + 12 Vs 1||3]. (4.4)
tn—l

It follows from the definition (u,p?) = (Rp(uo,po), @n(uo,po)) that €) = 0.
Multiplying (4.4) by 2Ato?(t"), summing over n and applying the discrete Gron-
wall lemma, we complete the proof. O

Lemma 4.3. Under the assumptions of Lemma 4.2, it holds that

N
O lp - phll3AL)? < C(At+h) ¥1<n<N.

n=1
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Proof. From Lemma 2.5 and (4.1), we find that

IN

IN

Bo(t) (lekls + Ik o)

o) B((ep ) (on. ) |

sup
(vh,qn) €(Xn,Mp) |Uh|1 + ||QhH0

. L[|l —ap @ gy
(wnan)€(Xn, M) [vnl1 + llanllo At

aun u” — ﬂnfl

) ()
Jr‘(f vp — Thop )| + | (Y(2, ") 5 AL vp

n _ =n—1
_|_‘ (%ﬂ)h — I‘hvh) ” (4,5)

Now, we estimate the right side terms of (4.5). Using the results provided in
[24], we arrive at

IN

IN

IN

IN

IA

IN

IA

|7, 07 = Tuegt)| < 1 lollog: = Tavitllo < CAIF ol Voo (4.6)
ou"  u" —u"t
tTL ( ’tn - , )‘
o) (vl N
ou™ u"—ﬂ"_l
" ") —— - —————
o(t") (. 1") g lollenllo
g [T 82 3
Cotyatr ([ 15 16ds) 190, (47)
tn—1
n _ =n—1
(i =)
n _ ,n-1 n—1_ —n—1
(g = o) [+ (g o =T
C h _1 n 1 L 1 n—1 _ n—
A€ IV onloller ™ — €2 up = o + Cohl|Vono]| Vi o

Cih _15 . T (ezdoty e
;6 500t ||V1th0/ Huﬂods+C2h||Vvh||0||Vuh 1”0

At - ot

Cih W [t 1

Alt'vahHoef%éOt / (e%éotuuhtHOdS + 5506%5““%“0)@
-1

+C2hl|[Vun o[ Vuy ™ o

n n

Cih " t 1 § t 1

e M [( [ e tunlas)” + 2 ([ e unfas)”
2 tn— tn-

+Ch [ Vo [lof Vg ™ o- (4.8)



SCFVM for N-S Equations 1217

From the definition of o(t) and t", we know that t"~1 < " < #"~! + At with
this relationship in mind, we have

(el ) @)y
< ’(U(t”)[(un - UZ)A; (u"™t - uﬁ_l)]wh)‘

N (rf(t")[(u"‘1 — up Ali— (@' - ﬂﬁ_l)]’vh)‘
- )(0(15”)(1/‘ — up) — UA(tt"‘l)(u"‘1 —ui ) )]

H (@t =g = @ =, )

+(o—<t”*1>[<u“ R E> et

At

For Ty, due to 0 < o(t) <

< 1(Vt>0), we have

‘( o(t™)(u" —ul) — ot ) (u" T — ! )77)h)’

At
1 —Sgt™ _1
o(t™)2e 2 1 Sot" _1.1 Sot™ _ _
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For Ty and T3, we get

1
. s
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Combining above estimates with (4.5)-(4.9), multiplying by Ato?(t), summing
n from 1 to N, using Lemmas 2.1, 3.1, 3.2 and 4.2, we get

N N
A0 (Y Iverldat+ > lni3at)
n=1 n=1

IN

T
Ceo [ ea(s)fun = undl + e lu — s })ds)
0

N N T
O (S 1 BAC+ Y [9u 3t + e [ e upds)
0

n=1 n=1
T 924 N
AR /0 155 Rds + Co(1) S Il — up 3¢
n=1

< C(At2 T h2>.

Combining with Lemma 3.1, we complete the proof. O
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