• Title/Summary/Keyword: finite series

Search Result 1,021, Processing Time 0.027 seconds

THREE-DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF THE JAWS AT THE SIMULATED BILATERAL AND UNILATERAL CLENCHINGS (양측성 및 편측성 이악물기시 상하악골 응력변화 및 변위에 관한 3차원 유한요소법적 연구)

  • Heo, Hoon;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.71-92
    • /
    • 1999
  • This study is to analyze the stress and displacement on the jaws during the bilateral and unilateral clenching task on three dimensional finite element model of the dentated skull. For this study, the computed tomography(G.E.8800 Quick, USA) was used to scan the total length of human skull in the frontal plane at 1.9mm intervals. The CAD data were extracted from the tomograms through digitizer(Summa Sketch III, USA) and then reconstructed by means of the spline method in the CAD program. In this project, a commercial software I-DEAS(Master Series ver-sion 3.0, SDRC Inc, USA) was used for three-dimensional stress analysis on the finite element model. which consists of articular disc, maxilla, mandible, teeth, periodontal ligament and cranium. The results are as follows. ; 1. During the bilateral clenching, each major muscle forces caused high stresses on various areas of skull: masseter muscle on articular disc and teeth ; temporal muscle on mandible and periodontal ligament ; medial pterygoid muscle on the temporomandibular joint. During the unilateral clenching, masseter muscle induced the maximum stress ; medial pterygoid muscle the minimum stress. 2. During the bilateral clenching, higher compressive stresses on articular disc were generated by the masseter muscle and higher deformation occurred on the most front outer sites. And during the unilateral clenching, temporal muscle and medial pterygoid muscle exerted their forces to twist temporomandibular joint area of the balancing side and induced a higher compressive stresses on the front outer sites of articular disc. 3. During the bilateral clenching, the masseter muscle bended the mandible outwardly, and then caused tensile stresses on the lingual surface of mandibular symphysis. And the medial pterygoid muscle caused tensile stresses on the labial surface of mandibular symphysis. 4. When each muscles were simultaneously applied on jaws, a high stress and displacement took place on mandible rather than on the maxilla. Also, a high stress and displacement took place during the unilateral clenching rather than during the bilateral clenching.

  • PDF

Finite Element Analysis for Evaluating the Performance of RC Beams Strengthened with SFRP Coating (분사식 섬유보강 코팅으로 보강된 RC보의 성능평가를 위한 유한요소해석 연구)

  • Ha, Sung-Kug;Yang, Bum-Joo;Lee, Haeng-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.579-585
    • /
    • 2009
  • In this paper, a series of finite element analyzes were carried out to evaluate the performance of the RC beams strengthened with sprayed fiber reinforced polymer(SFRP) coating. A damage constitutive model based on the micromechanical constitutive model(Lee, 2001) in conjunction with the damage models(Lee 등, 2000) for SFRP coating was implemented into the finite element code ABAQUS. The present prediction results were compared with experimental data(Ha, 2007; Ha 등, 2009) to assess the accuracy of the damage constitutive model. It was concluded from the comparative study that the computational model developed by implementing the damage constitutive model into ABAQUS is suitable for the prediction of the performance of RC beams strengthened with SFRP coating.

Finite Element Analysis of Hot Strip Rolling Process (열간박판압연공정의 유한요소해석)

  • 강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.829-837
    • /
    • 1992
  • This paper presents a new approach for the analysis of hot strip rolling processes. The approach is based on the finite element method and capable of predicting velocity field in the strip, temperature field in the strip, temperature field in the roll, and roll pressure. Basic finite element formulations for heat transfer analysis are described with emphasis on the treatment of numerical instability resulting from a standard Galerkin formulation. Comparison with the theoretical solutions found in the literature is made for the evaluation of the accuracy of the temperature solutions. An iterative scheme is developed for dealing with strong correlations between the metal flow characteristics and the thermal behavior of the roll-strip system. A series of process simulations are carried out to investigate the effect of various process parameters including interface friction, interface heat transfer coefficient, roll speed, reduction in thickness, and spray zone. The results are shown and discussed.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams

  • Mohammadnejad, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.655-674
    • /
    • 2015
  • In this paper, a new and simplified method is presented in which the natural frequencies of the uniform and non-uniform beams are calculated through simple mathematical relationships. The various vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with effects of viscose damping are investigated. The governing differential equations are first obtained and then; according to a harmonic vibration, are converted into single variable equations in terms of location. Through repetitive integrations, the governing equations are converted into weak form integral equations. The mode shape functions of the vibration are approximated using a power series. Substitution of the power series into the integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained with those obtained from other published references and results of available finite element software.

CARTIER OPERATORS ON COMPACT DISCRETE VALUATION RINGS AND APPLICATIONS

  • Jeong, Sangtae
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.101-129
    • /
    • 2018
  • From an analytical perspective, we introduce a sequence of Cartier operators that act on the field of formal Laurent series in one variable with coefficients in a field of positive characteristic p. In this work, we discover the binomial inversion formula between Hasse derivatives and Cartier operators, implying that Cartier operators can play a prominent role in various objects of study in function field arithmetic, as a suitable substitute for higher derivatives. For an applicable object, the Wronskian criteria associated with Cartier operators are introduced. These results stem from a careful study of two types of Cartier operators on the power series ring ${\mathbf{F}}_q$[[T]] in one variable T over a finite field ${\mathbf{F}}_q$ of q elements. Accordingly, we show that two sequences of Cartier operators are an orthonormal basis of the space of continuous ${\mathbf{F}}_q$-linear functions on ${\mathbf{F}}_q$[[T]]. According to the digit principle, every continuous function on ${\mathbf{F}}_q$[[T]] is uniquely written in terms of a q-adic extension of Cartier operators, with a closed-form of expansion coefficients for each of the two cases. Moreover, the p-adic analogues of Cartier operators are discussed as orthonormal bases for the space of continuous functions on ${\mathbf{Z}}_p$.

A Study on the Buckling and Ultimate Strength for Cylindrically curved plate subject to combined load (조합하중을 받는 원통형 곡판구조의 좌굴 및 최종강도 거동에 관한 연구)

  • Oh, Young-Cheol;Ko, Jae-Yong;Lee, Kyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.25-26
    • /
    • 2007
  • Ship are typically thin-walled structures and consists of stiffened plate structure by purpose of required design load and weight reduction etc. Also, a hull structural characteristics are often used in structures with curvature at deck plating with camber, side shell plating at fore and aft parts and bilge circle parts, It have been believed that these structures can be modelled fundamentally by a part of cylinder. Structural component with curvature subjected to combined loading regimes and complex boundary conditions, which can potentially collapse due to buckling. Hence, for more rational and safe design of ship structures, it is crucial importance to better understand the interaction relationship of the buckling and ultimate strength for cylindrically curved plate under these load components. In this study, the ultimate strength characteristic of curved plate under combined load(lateral pressure load + axial compressive load) are investigated through using FEM series analysis with varying geometric panel properties.

  • PDF

Comparison Study on Stress Sharing Characteristics of Sand or Gravel Compaction Piles with Low Replacement Area Ratio (모래와 쇄석을 이용한 저치환율 다짐말뚝공법의 응력분담특성에 관한 비교)

  • You, Seung-Kyong;Cho, Sung-Min;Kim, Ji-Yong;Shim, Min-Bo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.443-452
    • /
    • 2005
  • The compaction pile methods with low replacement area ratio used sand(SCP) or gravel(GCP) has been usually applied to improvement of soft clay deposits. In order to design accurately compaction pile method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP and GCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which and elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And,through the results of the numerical analyses, each mechanical behaviors of compaction piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between compaction piles and clays.

  • PDF

Calculation of Magnetic Field for Cylindrical Stator Coils in Permanent Magnet Spherical Motor

  • Li, Hongfeng;Ma, Zigang;Han, Bing;Li, Bin;Li, Guidan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2158-2167
    • /
    • 2018
  • This paper analyzed the magnetic field produced by the cylindrical stator coils of permanent magnet spherical motor (PMSM). The elliptic equations about the vector magnetic potential were given. Given that the eddy current effects are neglected, the magnet field of the PMSM is regarded as irrotational field, which can be calculated by scalar magnetic potential. The current density of cylindrical stator coil was proposed based on the definition of current density. The expression of current density of stator coil was obtained according to the double Fourier series decomposition and spherical harmonic functions. Then the magnetic flux density for scalar magnetic potential was derived. Further, the influence of different parameters on radial flux density was also analyzed. Finally, the results by the analytical method in this paper were validated by finite element analysis (FEA).

AUTOCOMMUTATORS AND AUTO-BELL GROUPS

  • Moghaddam, Mohammad Reza R.;Safa, Hesam;Mousavi, Azam K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.923-931
    • /
    • 2014
  • Let x be an element of a group G and be an automorphism of G. Then for a positive integer n, the autocommutator $[x,_n{\alpha}]$ is defined inductively by $[x,{\alpha}]=x^{-1}x^{\alpha}=x^{-1}{\alpha}(x)$ and $[x,_{n+1}{\alpha}]=[[x,_n{\alpha}],{\alpha}]$. We call the group G to be n-auto-Engel if $[x,_n{\alpha}]=[{\alpha},_nx]=1$ for all $x{\in}G$ and every ${\alpha}{\in}Aut(G)$, where $[{\alpha},x]=[x,{\alpha}]^{-1}$. Also, for any integer $n{\neq}0$, 1, a group G is called an n-auto-Bell group when $[x^n,{\alpha}]=[x,{\alpha}^n]$ for every $x{\in}G$ and each ${\alpha}{\in}Aut(G)$. In this paper, we investigate the properties of such groups and show that if G is an n-auto-Bell group, then the factor group $G/L_3(G)$ has finite exponent dividing 2n(n-1), where $L_3(G)$ is the third term of the upper autocentral series of G. Also, we give some examples and results about n-auto-Bell abelian groups.