Browse > Article
http://dx.doi.org/10.4134/JKMS.j170046

CARTIER OPERATORS ON COMPACT DISCRETE VALUATION RINGS AND APPLICATIONS  

Jeong, Sangtae (Department of Mathematics Inha University)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.1, 2018 , pp. 101-129 More about this Journal
Abstract
From an analytical perspective, we introduce a sequence of Cartier operators that act on the field of formal Laurent series in one variable with coefficients in a field of positive characteristic p. In this work, we discover the binomial inversion formula between Hasse derivatives and Cartier operators, implying that Cartier operators can play a prominent role in various objects of study in function field arithmetic, as a suitable substitute for higher derivatives. For an applicable object, the Wronskian criteria associated with Cartier operators are introduced. These results stem from a careful study of two types of Cartier operators on the power series ring ${\mathbf{F}}_q$[[T]] in one variable T over a finite field ${\mathbf{F}}_q$ of q elements. Accordingly, we show that two sequences of Cartier operators are an orthonormal basis of the space of continuous ${\mathbf{F}}_q$-linear functions on ${\mathbf{F}}_q$[[T]]. According to the digit principle, every continuous function on ${\mathbf{F}}_q$[[T]] is uniquely written in terms of a q-adic extension of Cartier operators, with a closed-form of expansion coefficients for each of the two cases. Moreover, the p-adic analogues of Cartier operators are discussed as orthonormal bases for the space of continuous functions on ${\mathbf{Z}}_p$.
Keywords
positive characteristic; Cartier operators; Hasse derivatives; Carlitz linear polynomials; shift operators; digit Cartier; digit derivatives; Carlitz polynomials; digit shifts; Wronskian;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Allouche and J. Shallit, Automatic sequences, Theory, applications, generalizations, Cambridge University Press, Cambridge, 2003.
2 B. Angles and F. Pellarin, Universal Gauss-Thakur sums and L-series, Invent. Math. 200 (2015), no. 2, 653-669.   DOI
3 V. Bosser and F. Pellarin, Hyperdifferential properties of Drinfeld quasi-modular forms, Int. Math. Res. Not. IMRN 2008 (2008), no. 11, Art. ID rnn032, 56 pp.
4 A. Bostan and P. Dumas, Wronkians and linear independence, Amer. Math. Monthly 117 (2010), no. 8, 722-727.   DOI
5 L. Carlitz, A set of polynomials, Duke Math. J. 6 (1940), 486-504.   DOI
6 P. Cartier, Une nouvelle operation sur les formes differentielles C. R. Acad. Sci. Paris 244 (1957), 426-428.
7 P. Cartier, Questions de rationalite des diviseurs en geometrie algebrique, Bull. Soc. Math. France 86 (1958), 177-251.
8 G. Christol, Ensembles presque periodiques k-reconnaissables, Theoret. Comput. Sci. 9 (1979), no. 1, 141-145.   DOI
9 K. Conrad, A q-Analogue of Mahler Expansions I, Adv. Math. 153 (2000), no. 2, 185-230.   DOI
10 K. Conrad, The digit principle, J. Number Theory 84 (2000), no. 2, 230-257.   DOI
11 J. Jang, S. Jeong, and C. Li, Criteria of measure-preservation for 1-Lipschitz functions on $F_q[[T]]$ in terms of the van der Put basis and its applications, Finite Fields Appl. 37 (2016), 131-157.   DOI
12 A. Garcia and J. F. Voloch, Wronskians and linear independence in fields of prime characteristic, Manuscripta Math. 59 (1987), no. 4, 457-469.   DOI
13 D. Goss, Fourier series, Measures and Divided Power Series in the theory of Function Fields, K-theory 1 (1989), no. 4, 533-555.
14 L. Hasse and F. K. Schmidt, Noch eine Begrundung der Theorie der hoheren Diffenentialquotienten in einem algrbraischen Funktionenkorper einer Unbestimmten, J. Reine Angew. Math. 177 (1937), 215-237.
15 S. Jeong, A comparison of the Carlitz and digit derivatives bases in function field arithmetic, J. Number Theory 84 (2000), no. 2, 258-275.   DOI
16 S. Jeong, Continuous Linear Endomorphisms and Difference Equations over the Completion of $F_q[T]$, J. Number Theory 84 (2000), no. 2, 276-291.   DOI
17 S. Jeong, Hyperdifferential operators and continuous functions on function fields, J. Number Theory 89 (2001), no. 1, 165-178.   DOI
18 S. Jeong, Shift operators and two applications to $F_q[[T]]$, J. Number Theory 133 (2013), no. 9, 2874-2891.   DOI
19 S. Jeong, Digit derivatives and application to zeta measures, Acta Arith. 112 (2004), no. 3, 229-245.   DOI
20 S. Jeong, Calculus in positive characteristic p, J. Number Theory 131 (2011), no. 6, 1089-1104.   DOI
21 S. Jeong, Characterization of ergodicity of T -adic maps on $F_2[[T]]$ using digit derivatives basis, J. Number Theory 133 (2013), no. 6, 1846-1863.   DOI
22 F. K. Schmidt, Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkorpern, Math. Z. 45 (1939), no. 1, 62-74.   DOI
23 E. Lucas, Sur les congruences des nombres euleriens et des coefficients differentiels des fonctions trigonometriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.
24 M. A. Papanikolas, Log-algebraicity on tensor powers of the Carlitz module and special values of Goss L-functions, preprint.
25 A. M. Robert, A course in p-adic analysis, Vol. 198 GTM, Springer-Verlag, New York, 2000.
26 J. P. Serre, Endomorphismes completement continus des espaces de Banach p-adiques, Inst. Hautes Etudes Sci. Publ. Math. 12 (1962), 69-85.   DOI
27 H. Sharif and C. Woodcock, Algebraic functions over a field of positive characteristic and Hadamard products, J. London Math. Soc. (2) 37 (1988), no. 3, 395-403.
28 B. Snyder, Hyperdifferential Operators on Function Fields and Their Applications, The Ohio State University (Columbus), Ph. D. Thesis, 1999.
29 C. G. Wagner, Interpolation series for continuous functions on ${\pi}$-adic completions of GF(q, x), Arta Arith. 17 (1971), 389-406.   DOI
30 J. F. Voloch, Differential operators and interpolation series in power series fields, J. Number Theory 71 (1998), no. 1, 106-108.   DOI
31 C. G. Wagner, Linear operators in local fields of prime characteristic, J. Jeine Angew. Math. 251 (1971), 153-160.
32 Z. Yang, $C^n$-functions over completions of $F_r[T]$ at finite places of $F_r(T)$, J. Number Theory 108 (2004), no. 2, 346-374.   DOI