• Title/Summary/Keyword: finite mixture method

Search Result 127, Processing Time 0.025 seconds

Heat Distribution Analysis of an End-Quenching Process Considering Latent Heat of Transformation (변태잠열을 고려한 담금과정의 열전도 해석)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.79-84
    • /
    • 1998
  • It is very difficult to analyze the transient temperature distribution during quenching of the steel because of coupled effects among temperature, structures and stresses. In this paper, using Inoue's equation of evolution and mixture rule, transient temperature distribution is calculated by the finite element method considering latent heat of transformation structure and temperature dependence of physical and mechanical prperties for the 0.45% carbon cylindrical steel bar with 40mm diameter and 20mm height during end-quenching.

  • PDF

The Static Structural Design and Test of High Speed Propeller Blade (고속 프로펠러 블레이드 정적 구조 설계 및 시험)

  • Park, Hyun-Bum;Choi, Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Modeling and Application of Active Fiber Composites (능동 화이버 복합재의 모델링 및 적용 연구)

  • Ha, Seong-Gyu;Lee, Yeong-U;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1261-1268
    • /
    • 2001
  • Effective material properties of active fiber composites with interdigitated electrodes are derived as a function of the fiber volume fraction. For the purpose of applying the rule of mixture, three unit cell models are introduced; each for the deformation and stress continuities in the out of plane and in-plane directions, and the continuity of the electrical displacement in the longitudinal direction. Derived effective material properties are compared with the results by the finite element method; good agreements are observed between them. As an application, the electromechanical behavior of the angle ply laminates with the active fiber layers bonded on the top and bottom surfaces are investigated; the angle of piezoelectric fiber to maximize the twisting curvature is obtained using the present model.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Improved Minimum Statistics Based on Environment-Awareness for Noise Power Estimation (환경인식 기반의 향상된 Minimum Statistics 잡음전력 추정기법)

  • Son, Young-Ho;Choi, Jae-Hun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.123-128
    • /
    • 2011
  • In this paper, we propose the improved noise power estimation in speech enhancement under various noise environments. The previous MS algorithm tracking the minimum value of finite search window uses the optimal power spectrum of signal for smoothing and adopts minimum probability. From the investigation of the previous MS-based methods it can be seen that a fixed size of the minimum search window is assumed regardless of the various environment. To achieve the different search window size, we use the noise classification algorithm based on the Gaussian mixture model (GMM). Performance of the proposed enhancement algorithm is evaluated by ITU-T P.862 perceptual evaluation of speech quality (PESQ) under various noise environments. Based on this, we show that the proposed algorithm yields better result compared to the conventional MS method.

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

Micromechanical Finite Element Analysis and Effective Material Property Evaluation of Composite Materials (미시역학을 고려한 복합재료의 유한요소해석 및 유효 물성치 평가)

  • 이승표;정재연;하성규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.220-223
    • /
    • 2003
  • The methodology of micromechanical finite element method (MFEM) is proposed to calculate the micromechanical strains on fiber and matrix under mechanical and thermal loadings. For micromechanical analysis, composite structure is idealized the square and hexagonal unit cells. Boundary conditions are determined to calculate the effective material properties of composites and the strain magnification matrix. And they are verified by comparing with the results from multi cells, and the strain distributions of the unit cells are in accordance with those of the multi cells. Finally, the effective material properties of composite structure are obtained with respect to its fiber volume fraction and compared with results from rules-of-mixture.

  • PDF

Finite Element Analysis of Combustion Reaction on Iron and Metal Oxides Interface (Fe-금속 산화물 계면에서 연소반응의 유한 요소해석)

  • Gu, Mun-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.118.2-118.2
    • /
    • 2017
  • Combustion behavior of Fe, CuO, NiO, ZnO and $Fe_2O_3$ powder mixture was carried out by finite element method (FEM) to understand a reaction at iron and metal oxide interface. The FEM was done by using ANSYS Fluent 17.0. Initial and boundary conditions are 1 atmosphere, room temperature, 0.1MPa of oxygen partial pressure, $T_{S1}=1127^{\circ}C$, $T_{S2}=327^{\circ}C$ for a cylindrical shape specimen with dia. $35{\times}80$ [mm]. The maximum combustion temperature is $1537^{\circ}C$ for the condition of conduction, convection and radiation. The combustion temperature and rate are about $847^{\circ}C$ and 3.9mm/sec, respectively. The combustion wave is enough to make ternary ferrite phase like $CuNiZnFe_2O_3$.

  • PDF

Finite Element Analysis of Diaphragm Type Air Springs considering the Variation of Fiber Angles (섬유의 적층각을 고려한 다이아프램형 공기 스프링의 유한요소 해석)

  • Lee, Hyeoun-Guk;Kim, Se-Ho;Heo, Hun;Kim, Jin-Yeong;Chung, Su-Gyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.29-33
    • /
    • 1999
  • this paper concerned with the stress analysis of a diaphragm-type air spring which consists of rubber linings nylon reinforced rubber composite. The analysis is carried out with a finite element method developed to consider the orthotropic properties geometric non-linearity and contact between an air bag and a bead ring The material properties are evaluated with the Halpio-Tsai equations and the rule of mixture. The analysis results demonstrate the variation of the outer diameter the fold height and the vertical force with different models to the design a proper diaphragm air springs.

  • PDF