• Title/Summary/Keyword: finite graph

Search Result 166, Processing Time 0.025 seconds

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Construction of the Multiple Processing Unit by De Bruijn Graph (De Bruijn 그래프에 의한 다중처리기 구성)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2187-2192
    • /
    • 2006
  • This paper presents a method of constructing the universal multiple processing element unit(UMPEU) by De Bruijn Graph. The second method is as following. First, we propose transformation operators in order to construct the De Bruijn UMPEU using properties of graph. Second, we construct the transformation table of De Bruijn graph using above transformation operators. Finally we construct the De Bruijn graph using transformation table. The proposed UMPEU be able to construct the De Bruijn graph for any prime number and integer value of finite fields. Also the UMPEU is applied to fault-tolerant computing system, pipeline class. parallel processing network, switching function and its circuits.

a linear system approach

  • 이태억
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.118-118
    • /
    • 1993
  • We consider a discrete event dynamic system called periodic job shop, where an identical mixture of items called minimal part set(MPS) is repetitively produced in the same processing order and the primary performance measure is the cycle time. The precedence relationships among events(starts of operations) are represented by a directed graph with rocurront otructure. When each operation starts as soon as all its preceding operations complete(called earliest starting), the occurrences of events are modeled in a linear system using a special algebra called minimax algebra. By investigating the eigenvalues and the eigenvectors, we develop conditions on the directed graph for which a stable steady state or a finite eigenvector exists. We demonstrate that each finite eigenvector, characterized as a finite linear combination of a class of eigenvalue, is the minimum among all the feasible schedules and an identical schedule pattern repeats every MPS. We develop an efficient algorithm to find a schedule among such schedules that minimizes a secondary performance measure related to work-in-process inventory. As a by-product of the linear system approach, we also propose a way of characterizing stable steady states of a class of discrete event dynamic systems.

  • PDF

ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2007
  • We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends($1) in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to $\mathbf{R}^l$, where $l$ is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in an one to one correspondence with $\mathbf{R}^l$.

THE GROUP OF GRAPH AUTOMORPHISMS OVER A MATRIX RING

  • Park, Sang-Won;Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.301-309
    • /
    • 2011
  • Let R = $Mat_2(F)$ be the ring of all 2 by 2 matrices over a finite field F, X the set of all nonzero, nonunits of R and G the group of all units of R. After investigating some properties of orbits under the left (and right) regular action on X by G, we show that the graph automorphisms group of $\Gamma(R)$ (the zero-divisor graph of R) is isomorphic to the symmetric group $S_{|F|+1}$ of degree |F|+1.

AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS

  • Kerahroodi, Mahtab Koohi;Nabaei, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1056
    • /
    • 2020
  • Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, $^{\bar{\mathbb{AG}}}$(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n, m ∈ ℕ such that InJm = (0) with In, Jm ≠ (0). First, we differentiate when 𝔸𝔾(R) and $^{\bar{\mathbb{AG}}}$(R) coincide. Then, we have characterized the diameter and the girth of $^{\bar{\mathbb{AG}}}$(R) when R is a finite direct products of rings. Moreover, we show that $^{\bar{\mathbb{AG}}}$(R) contains a cycle, if $^{\bar{\mathbb{AG}}}$(R) ≠ 𝔸𝔾(R).

A Construction of the Linear Digital Switching Function over Finite Fields (유한체상에서의 선형디지털스위칭함수 구성)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2201-2206
    • /
    • 2008
  • This paper presents a method of constructing the Linear Digital Switching Function(LDSF) over finite fields. The proposed method is as following. First of all, we extract the input/output relationship of linear characteristics for the given digital switching functions, Next, we convert the input/output relationship to Directed Cyclic Graph(DCG) using basic gates adder and coefficient multiplier that are defined by mathematical properties in finite fields. Also, we propose the new factorization method for matrix characteristics equation that represent the relationship of the input/output characteristics. The proposed method have properties of generalization and regularity. Also, the proposed method is possible to any prime number multiplication expression.

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES

  • Ma, Xiaobin;Wang, Dengyin;Zhou, Jinming
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.519-532
    • /
    • 2016
  • The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.