• Title/Summary/Keyword: finite differences method

Search Result 218, Processing Time 0.025 seconds

PARAMETRIC INVESTIGATIONS ON THE DOUBLE DIFFUSIVE CONVECTION IN TRIANGULAR CAVITY

  • Kwon, SunJoo;Oh, SeYoung;Yun, Jae Heon;Chung, Sei-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.419-432
    • /
    • 2007
  • Double-diffusive convection inside a triangular porous cavity is studied numerically. Galerkin finite element method is adopted to derive the discrete form of the governing differential equations. The first-order backward Euler scheme is used for temporal discretization with the second-order Adams-Bashforth scheme for the convection terms in the energy and species conservation equations. The Boussinesq-Oberbeck approximation is used to calculate the density dependence on the temperature and concentration fields. A parametric study is performed with the Lewis number, the Rayleigh number, the buoyancy ratio, and the shape of the triangle. The effect of gravity orientation is considered also. Results obtained include the flow, temperature, and concentration fields. The differences induced by varying physical parameters are analyzed and discussed. It is found that the heat transfer rate is sensitive to the shape of the triangles. For the given geometries, buoyancy ratio and Rayleigh numbers are the dominating parameters controlling the heat transfer.

  • PDF

Frictional Effect during Equal Channel Angular Pressing(ECAP) with Pure-Zr (Pure-Zr의 ECAP공정에서 마찰의 영향)

  • 박상석;권기환;채수원;권숙인;김명호;황선근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.409-412
    • /
    • 2000
  • Much research efforts have been made on the structure and properties of metals deformed to severe plastic deformation (SPD). Being deformed to SPD, ultra-fine grains (UFG) are usually formed, and UFG structure exhibits fundamental differences in original physical properties. One method often used to obtain SPD is equal channel angular pressing (ECAP). In order for this technique to be exploited, it is important to understand the deformation behavior during the ECAP processing with respect to friction. The finite element method (FEM) has been used to investigate this issue.

  • PDF

Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports II

  • Kim, Duk-hyun;Han, Bong-Koo;Lee, Jung-Ho;Park, Ji-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.220-223
    • /
    • 2000
  • A method of calculating the natural frequency corresponding to the modes of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control The concrete slab is considered as a special orthotropic plate. The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

  • PDF

A Study on the Improvement of FEM model in Plate Vibration by Modification of Young's Modulus and Shape (FEM 모델의 형상과 감쇠계수의 추정을 통한 평판진동해석의 개선에 대한 연구)

  • Park, Sok-Chu;Oh, Chang-Guen
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.794-801
    • /
    • 2012
  • Finite Element Method is a strong tool to analyse static and dynamic problem of a structure. FEM is a good method for static problem, but for dynamic problem there are some differences between real phenomena and analyzed phenomena. Therefore some modifications are needed to identify two results. In this paper authors propose a genetic algorithm method 1) to adjust dimensions of plate for identifying natural frequencies, 2) to fit amplitude of FEM Frequency Response Function(FRF) onto it of real FRF. Analysis by raw FEM data gave questions if the results were for the same object. By only adjusting Young's modulus much better accordances were obtained, but limitation existed still. Very good agreements were achieved by shape modification and damping coefficient identification.

Deformation analysis of high CFRD considering the scaling effects

  • Sukkarak, Raksiri;Pramthawee, Pornthap;Jongpradist, Pornkasem;Kongkitkul, Warat;Jamsawang, Pitthaya
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.211-224
    • /
    • 2018
  • In this paper, a predictive method accounting for the scaling effects of rockfill materials in the numerical deformation analysis of rockfill dams is developed. It aims to take into consideration the differences of engineering properties of rockfill materials between in situ and laboratory conditions in the deformation analysis. The developed method is based on the modification of model parameters used in the chosen material model, which is, in this study, an elasto-plastic model with double yield surfaces, i.e., the modified Hardening Soil model. Datasets of experimental tests are collected from previous studies, and a new dataset of the Nam Ngum 2 dam project for investigating the scaling effects of rockfill materials, including particle size, particle gradation and density, is obtained. To quantitatively consider the influence of particle gradation, the coarse-to-fine content (C/F) concept is proposed in this study. The simple relations between the model parameters and particle size, C/F and density are formulated, which enable us to predict the mechanical properties of prototype materials from laboratory tests. Subsequently, a 3D finite element analysis of the Nam Ngum 2 concrete face slab rockfill dam at the end of the construction stage is carried out using two sets of model parameters (1) based on the laboratory tests and (2) in accordance with the proposed method. Comparisons of the computed results with dam monitoring data indicate that the proposed method can provide a simple but effective framework to take account of the scaling effect in dam deformation analysis.

Thermal Behavior Analysis on the Cylinder Block of an Automotive Gasoline Engine (자동차용 가솔린 기관의 실린더 블록에 대한 열적 거동 해석)

  • 손병진;김창헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.211-221
    • /
    • 1998
  • Thermal behavior on the cylinder block of a 4-cylinder, 4-stroke 2.0L SOHC gasoline engine was numerically and experimentally analyzed. The numerical calculation was performed using the finite element method. The cylinder block was modelled as a three dimensional finite element by considering its geometry. The physical domain was devided into hexahedron elements. 16 thermocouples were installed at points of 2mm inside from cylinder wall near top ring of piston in cylinder block, which points have suffered major thermal loads and suggested as proper measurement points for engine design by industrial engineers. Under full load and 9$0^{\circ}C$ coolant temperature condition, temperature behavior of cylinder block according to engine speed were analyzed. The results showed that temperature rose gradually to conform to a function of 2nd~4th order of engine speed at intake side, exhaust and siamese side, respectively. As engine load was changed from 100 to 50% by 25% step, temperature curve also conformed to 2nd~7th order function of engine speed. Temperature differences by load condition were similar among 100, 75% and 50%. Under full load and coolant temperature of 11$0^{\circ}C$, temperature behavior were also analyzed and the result also showed conformance to 2n d~7th order function of engine speed. Temperature curve was transferred in parallel upwards corresponding coolant temperature rise.

  • PDF

Elastic distortional buckling of tapered composite beams

  • Bradford, M.A.;Ronagh, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.269-281
    • /
    • 1997
  • The overall buckling mode in a composite steel-concrete beam over an internal support is necessarily lateral-distortional, in which the bottom compressive range displaces laterally and twists, since the top flange is restrained by the nearly rigid concrete slab. An efficient finite element method is used to study elastic lateral-distortional buckling in composite beams whose steel portion is tapered. The simplified model for a continuous beam that is presented herein is a fixed ended cantilever whose steel portion is tapered, and is subjected to moment gradient. This is intended to give an insight into distortion in a continuous beam that occurs in the negative bending region, and the differences between the cantilever representation and the continuous beam are highlighted. An eigenproblem is established, and the buckling modes and loads are determined in the elastic range of structural response. It is found from the finite element study that the buckling moment may be enhanced significantly by using a vertical stiffener in the region where the lateral movement of the bottom range is greatest. This enhancement is quantified in the paper.

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

Fatigue study on additional cutout between U shaped rib and floorbeam in orthotropic bridge deck

  • Ju, Xiaochen;Zeng, Zhibin;Zhao, Xinxin;Liu, Xiaoguang
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.319-329
    • /
    • 2018
  • The field around additional cutout of the floor beam web in orthotropic bridge deck was subjected to high stress concentration, especially the weld toe between floor beam and U shaped rib and the free edge of the additional cutout. Based on different considerations, different geometrical parameters of additional cutout were proposed in European, American and Japanese specifications, and there remained remarkable differences among them. In this study, considering influence of out-of-plane deformation of floor beam web and U shaped rib, parameter analysis for additional cutout under typical load cases was performed by fine finite element method. The influence of additional cutout shape and height to the stress distribution around the additional cutout were investigated and analyzed. Meanwhile, the static and fatigue test on this structure details was carried out. The stress distribution was consistent with the finite element analysis results. The fatigue property for additional cutout height of 95mm was slightly better than that of 61.5 mm.

A Thoracic Model using Three-dimensional Finite Element Method (3차원 유한 요소법을 이용한 흉부 모델)

  • Deok-Won Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 1987
  • A three-dimensional thoracic model was constructed using 8-node trilinear hexahedron elements. A three-dimensional steady-state finite element code was developed using FORTRAN. Its output consists of potential at each node. current In each element, and total current In each layer in the z-direction. The thoracic model was Implemented to calculate basal impedance(Zo) In Impedance CardiograPhy Generalized Laplace's equation was solved with Dirlchlet(constant potentials) and homogeneous Neumann(no flux) boundary conditions. It was found that the con structed thoracic model was reasonable since the calculated potential differences between the adjacent electrodes and basal impedance were about the same as the measured ones.

  • PDF