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SuNnJoo KwoN*, SEYouNG Ou**, JAE HEON YUN***
AND SEI-YOUNG CHUNG¥***

ABSTRACT. Double-diffusive convection inside a triangular porous
cavity is studied numerically. Galerkin finite element method is
adopted to derive the discrete form of the governing differential
equations. The first-order backward Euler scheme is used for tem-
poral discretization with the second-order Adams-Bashforth scheme
for the convection terms in the energy and species conservation
equations. The Boussinesq-Oberbeck approximation is used to cal-
culate the density dependence on the temperature and concentra-
tion fields. A parametric study is performed with the Lewis num-
ber, the Rayleigh number, the buoyancy ratio, and the shape of
the triangle. The effect of gravity orientation is considered also.
Results obtained include the flow, temperature, and concentration
fields. The differences induced by varying physical parameters are
analyzed and discussed. It is found that the heat transfer rate is
sensitive to the shape of the triangles. For the given geometries,
buoyancy ratio and Rayleigh numbers are the dominating parame-
ters controlling the heat transfer.

1. Introduction

In the past two decades, there were numerous attempts to study
double-diffusive phenomena owing to its wide encounters in the nature
and vast engineering applications [1]. Specially, the double-diffusive phe-
nomenon in an enclosure is considered as an important research area in
fluid engineering because of its promising application in the manufac-
turing, Differences in the molecular thermal and mass diffusivities of
the fluids make the double-diffusive convection phenomena unique from
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ordinary convective phenomena. Majority of both experimental and the-
oretical approaches on the double-diffusive convection is confined to a
rectangular geometry where emphasis were given to the basic feature
of the convection effects. There are several attempts on studying the
double-diffusive phenomena in different geometries. Different geometries
such as spheres and cylinders are succinctly reviewed for the double-
diffusive convection in porous media[2]. Thus far, literatures on the
double-diffusive convection are ample, however, there are very few lit-
eratures addressing the double-diffusive convection in triangle geometry
even though its possible wide applications in the engineering problems.
The purpose of our present study is to investigate the double-diffusive
phenomena in triangular geometries.

There are several reported studies on the flow in a trapezoidal cavity
which is close to the triangular geometry. Separated flow in a trapezoidal
driven cavity is studied by Darr and Vanka[3]. Interesting flow pattern
owing to the trapezoidal geometry is reported in their study. Double-
diffusive convection phenomena in the anisotropic trapezoidal porous
cavity is studied by Nguyen et al.[4]. They reported different number of
the separated flow loops in the cavity where the number of the loops was
depending on the geometric configuration as well as the dimensionless
groups of the flow.

Even though most of the literature on the double-diffusive convection
are in the rectangular or trapezoidal geometries, the triangular cavity
can be encountered in the corrugated components of pipes or ducts and
at least as common in practice as the square[5]. Despite of the wide
encounters in the engineering problems, it is a very recent effort that
Ribbon et al. [6] investigate the viscous flow characteristics in the trian-
gular cavity. In their study, numerical assessment results are shown for
the unique viscous flow characteristics in the triangular cavity by using
finite difference formulation, The numerical treatment of the singular
points of the triangle was the major concern of their study. So far, to
our knowledge, the double-diffusive convection in a triangular cavity has
not been addressed by any researchers.

The purpose of this study is parametric investigation on the double-
diffusive convection in triangular cavities. Three different types of tri-
angle cavity shapes are considered in order to show the geometric effects
on the double-diffusive convection. The Boussinesq-Oberbeck approxi-
mation for the density dependence on the temperature and the concen-
tration is used to account for the buoyancy force induced by temper-
ature and concentration fields. The governing equations are based on
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the mass, momentum, and energy conservation laws. The nondimen-
sionalizing parameters are selected for the dependent variables in the
governing equations. The nondimensional form of the governing equa-
tions are presented and solved in the triangular meshes. Galerkin finite
element method is used in order to avoid the special treatments on the
triangular shape in the finite difference method|6].

2. Problem description and mathematical formulation

Triangular enclosure considered in this study is shown in Figure 1
which is filled with an porous material. The porous material is satu-
rated with a binary fluid which is initially at uniform temperature Ty
and uniform concentration Sg. At time t = 0, the left side wall is ex-
posed to different temperature 77 and concentration S;. The right side
wall is subjected to a constant temperature Ty and concentration Sy
fields throughout the simulation time. The bottom wall is kept insu-
lated to the heat and mass penetration. Under gravitational field, the
imposed temperature arid concentration differences cause local density
differences and induce the fluid movement. The coupled effects of the
temperature and concentration gradients on the transports inside the
cavity can be described by using a set of governing equations. In this
study, local thermal equilibrium with negligible dispersion is assumed.
Soret and Dufour effects are neglected. By assuming the fluid is obeying
the Darcy’s law the mass, momentum, and energy conservation equa-
tions can be written as follows:

(2.1) V-u=0
(2.2) u= —I; [(Vp — prgil

oT )
(2.3) [bpe)s + (1= )(pe)s] 5 + (pe)yu- VT = V7T
(2.4) ¢8af +u-VS = DV?3s

where u is the Darcian velocity vector, p is the pressure, t is the time,
K is the permeability tensor, g is the gravity. x is the effective thermal
conductivity. p is the viscosity, c is the heat capacity, p is the density, ¢
is the porosity. The subscripts f and s denote the fluid and solid phases
respectively.
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In order to avoid difficulties arising from specifying boundary condi-
tions for the pressure, we adopt the stream-function formulation in this
study. The stream-function(V) is defined by using the velocity as

ov, ov
2.5 u=—i——j
(2.5) 9y o
where i and j are the unit vectors in x— and y— directions, respectively.
In order to perform parametric study, the governing equations are re-
casted in the dimensionless form. The variables are nondimensionalized
by using the following dimensionless parameters:

t - Lg ) ("1: ’y ) - Lb ) W - a7
«_ S5—=250 Y A Bs(S1 — So)
S = =, T = —_—, B =,
S1— 5o Ty —To Br(T1 — To)
_ 9lpe)s + (1 = 9)(po)s
(pc)y ’
K BsgLy(Th — To) e
2. = Le = —.
(2.6) Ra " y Le= 4

« and v are the thermal diffusivity and kinematic viscosity respectively.
The asterisks are representing the variable is in dimensionless form.
From now on, the asterisks will be omitted for the convenience. Ra,
Le, and B are the Rayleigh number, Lewis number and the buoyancy
ratio in respective order. L; denotes the bottom length of a triangle.
Since the present study only focuses on the isotropic porous media, the
scalar K represent the permeability tensor at every location inside the
triangular region.

Following the study in anisotropic porous media by Nguyen et al.[4],
we adopted the Boussinesq-Oberbeck approximations which can be writ-
ten as

(2.7) pf=po[l—Br(T —1To) + Bs(S — So)].-

Equation (7) states that the density is proportional bilinearly to the
temperature and concentration changes.

By utilizing the above equations(5, 6, 7), the governing equations can
be recanted in the dimensionless form as :

0 0 ovr oV or oS
28 (gta) (m+%) = ke |5 ~Bo)
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or 0°T  O*T
oS 1 [9%2S 028
(210 a9 =1 5 o)

where J(,) represents the Jacobian. Because of the Darcian flow as-
sumption used in this study, the inertia and the boundary effects on the
momentum transfer are neglected. Thus the present analysis is restricted
to creeping-like-flow in low porosity media.

3. Numerical procedure

Following the earlier work of Nguyen et al. [4], we adopt semi-implicit
procedure which combines the second-order Adams Bashforth and the
first-order backward Euler schemes for time integration. Discretization
with the time derivative terms by using the combination of the first
order implicit and second order explicit schemes yields the governing
equations in the form as follows:

g 82 82 n+1
[At B (a * ayﬂ g

(3.1) ;
- A%T" + 5 B, ) — (e )]
¢ _ 1 (& P\ gn
(3.2) [At L. <8x2 * 0y? S
1
= Aits" + 5 [37(w",87) — g, s
o | 9\ [ountl gyt ormtt 9snt
(3:3) (6)3:+8y> ( or y ) :—Ra[ Oz -5 oz

where At is the time increment and the superscripts n+ 1, n, and n — 1
represent the new, current and old time levels. Since the temperature
and concentration fields are updated by Adams-Bashforth scheme, the
flow field is solved after the new time solutions for the temperature and
concentration fields are obtained.

Galerkin finite element method is used to spatially discretize the gov-
erning equations. In the finite element method, the calculation domain
is subdivided into number of sub-domain element. For every element,
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the dependent variable is expanded with a set of basis functions multi-
plied by the representing coefficients. The details of the Galerkin finite
element procedure can be found elsewhere[7]. Thus the details of the
method will be omitted in this paper. By using the principal of weighted
residual with the Galerkin procedure, the resulting discretized equations
can be written as follows :

NE
(3.4) > ATy = Z{bT}e
e=1

NE NE
(3.5) D [As]{s}e = {bs}",
e=1 e=1

(3.6) Z [Ag]{ ¥} = Z{bw}e

where NFE is the total number of elements. [Ar]¢, [As]¢, and [Ay]®
are the element matrices and {br}¢, {bs}¢, and {by}¢ are the known
right-hand-side vectors.

4. Results and discussions

The numerics used in this study are similar to those used for the
non-rectangular enclosure double-diffusive convection[4]. Thus, the ver-
ification of the present numerics is revered to [4]. Since our main pur-
pose of this study is to explore the effect of triangular geometry on the
double-diffusive convection phenomena, we will focus our attention on
three equilateral triangles with bottom length L, = 1 and its side an-
gles B = 0.157, 0.33m, and 0.457. Three different 3 values are used to
examine the geometric effects. The boundary conditions are specified
as to allow no heat and mass are penetrated along the bottom wall and
temperature and concentration differences are imposed across the left
to right walls. Thus, the mathematical representation for the boundary
conditions can be written as

T =1 along 9 , T = 0 along 092, , n-VT = 0 along 9€, ,
S =1 along 9€; , S =0 along 92, , n-V.S =0 along 0€ ,
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where the subscripts [, 7, and b denote the left, right, and bottom walls
in respective order.

In order to study the effects of Lewis and Rayleigh numbers, cal-
culations are made for the different Lewis number, buoyancy ratio, and
Rayleigh number The steady state concentration, flow, and temperature
fields for Le =1, B =0, and Ra = 10 case are shown for the three dif-
ferent geometries in Figure 1. The steady state is assumed to be reached
if the following criteria are reached:

|Zn+1 . Zn’

|Z"|
where Z represents dependent variables and superscript n and n + 1
represent the time levels. The tolerance ¢ is set to be 1072, Owing
to the small Lewis number, the concentration fields show near to sym-
metric profiles along the geometric centerline in Figure 1. However, the
temperature fields show the slightly concentrated isotherms toward the
high temperature wall. Both the concentration and temperature pro-
files show iso-lines perpendicular to the bottom wall because of the no
flux boundary condition adopted in this study. The buoyancy induced
flow in the triangles show more mass flux near the walls compared to
the center since the temperature differences are specified along the wall
without any internal heat sources.

In order to demonstrate the effect of direction of gravity, the results
of opposite gravity case for Le = 1 and Ra = 100 case is shown in Figure
2. is distorted near that surface for the opposite gravity.

For the case of high Lewis number, Figure 3 shows the results for the
Le =10, B =0, and Ra = 100 case with 8 = 0.457. The concentration
fields shows the higher concentration fields penetrate to the cold wall
side along the wall. Since it is assumed that the mass transfer does not
contribute to heat transfer, the isotherm contours show no difference
from the one obtained for Le = 1 and Ra = 100 case. However, it
is noticeable that the mass is transported by the convection current
more efficiently in case of high Lewis number case. As a result, the
iso-concentration lines shows sharp edges along the convected current.

Figure 4 shows the case for B = 1, Le = 5, and Ra = 200. Here
the flow fields show multi-cell flow patterns. The Boussinesq-Oberbeck
approximation adopted in this study implies that for B = 1, the density
changes due to the concentration changes are about the same magnitude
changes due to the temperature changes. The corresponding effects on
the buoyancy force due to the concentration changes are significant for

(4.1) <e
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FIGURE 1. Steady state solution of concentration(left),
flow(middle), and temperature(right) fields for L, =
1,B =0, and R, = 10 case with gravity downward di-
rection.
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FIGURE 2. The mirror images of distortions of concen-
tration field for gravity downward direction(left) and
gravity upward direction(right) with L, = 1,B = 0,
R, =100, and 8 = 0.33m.

B =1 and as a results the flow fields show the multiple recirculating
cells. It is also interesting the shape of the recirculating cells changes
for different § cases. For § = 0.157 case, there are three recirculat-
ing loops in the streamline contours. The strongest recirculation occurs
near the top of the triangle and the second and the third ones occurs
along the left wall boundaries. The corresponding concentration field
show more distorted iso-concentration lines near the top of the triangle.
For the 8 = 0.337, there are two cells in the flow field. In this case,
the strongest recirculation occurs along the hot wall and extends the
flow almost the half of the cold wall. There is significant effects on the
concentration fields due to the strong recirculation where one can find
the concentration plateau near the hot wall. The second recirculation
is very weak and shows very little effects on both the concentration and
temperature profiles. Thus the temperature fields near the secondary
recirculation zone show almost uniform temperature profiles. In the
case of 8 = 0.45m, there are two recirculation zone formed with approx-
imately same magnitude. The stronger recirculation zone is found near
the left wall corner which is contrast to the case of 8 = 0.157 case.
The corresponding temperature fields show that the steepest tempera-
ture gradient can be found at the left side corner because the cold fluids
are pushed to the side by the strong convection. The similar trends can
be found for the concentration fields. It is noteworthy that the effects
of different triangle shape can results in different flow, concentration,
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FIGURE 3. Steady state solution of concentration(left),
flow(middle), and temperature(right) fields for L. =
10, B =0, and R, = 100 case(top) and L. = 100, B = 0,
and R, = 10 case(bottom)with gravity downward direc-
tion.
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FIGURE 4. Steady state solution of concentration(left),
flow(middle), and temperature(right) fields for L. =
5, B =1, and R, = 200 case with gravity downward
direction.
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and temperature fields. The number of the cells and magnitude of the
recirculations are also significantly affected by the geometries.

For the higher B = 3 with the same Le and Ra numbers, the multi-
cell flow patterns were no longer found. Instead, the flow fields show that
strong convection is found along the side walls. Relatively, the core of the
triangles are not affected by the convection, resulting relatively straight
iso-concentration and isotherm lines near the centers. It is interesting
to note that the steeper concentration and temperature fields are found
near the cold wall corner in this case.

In order to investigate the effects of various parameters on the heat
transfer, Nusselt number is selected as an indicator for the heat transfer
rate. The Nusselt number in this study is defined as

B K(Tl — To)/Lb Le 8$

where ¢ is the total heat transfer rate. The calculated Nusselt number
for the selected cases are shown in Figure 5. In order to illustrate the
effects of different Rayleigh number, the Nusselt numbers are plotted on
the top of Figure 5. For the same geometrical and physical parameters,
the high Rayleigh number results in the heat transfer rate is high as
one can expect. It should be mentioned here that the different 5 angles
effects on the heat transfer are significant. As the 8 angle increases, the
heat transfer rate increases order of magnitude. This is parity owing
to the definition of the Nusselt number we used in this study. The
Nusselt number is defined by using the length of the bottom wall as the
characteristic length. However, it is depicted in the isotherms that the
temperature contours have steeper gradients as the § angle increases.

The effects of the B ratio on the heat transfer rates are illustrated
in the middle of Figure 5. In general, it can be said that as the B
ratio increases, the heat transfer rate decreases. However, for the case
that the multi-cell convection is dominant, the Nusselt number has os-
cillatory behavior with a long wavelength as shown in the graphs. The
bottom of Figure 5 shows the effects of the gravitational direction on
the heat transfer rate and the fact that the gravity direction does not
affect the heat transfer rate significantly. It is due to the mirror image
of the temperature fields calculated for the positive and negative gravity
directions.

The study on the trapezoidal geometry by Nguyen et al.[4] shows
that the different Lewis number does not affect the heat transfer rate
significantly. Thus, parametric study on the effect of Lewis number on
the triangle geometry is omitted in this study.

(4.2) Nu (092)dy
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FIGURE 5. Transient Nusselt number for different R,
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directions(bottom).

431



432

(1]

2l
(3]

*

SunJoo Kwon, SeYoung Oh, Jae Heon Yun, and Sei-Young Chung

References

C. F. Chen and D. H. Johnson, Double-diffusive convection: A report on an
engineering foundation conference, J. Fluid Mech. Digital Archive 138 (1984)
405-416.

D. A. Nield and A. Bejan, Convection in porous media, Springer-Verlag, New
York, 2006.

J. H. Darr and S. P. Vanka, Separated flow in a driven trapezoidal cavity, Phys.
Fluids A. 3 (1991), no. 3, 385-392.

H. D. Nguyen, S. Paik, and R. W Douglass, Double-diffusive convection in
a non-rectangular enclosure filled with an anisotropic porous medium having
blique principal azes, private communication, (2002).

E. M. Sparrow and M. Charmchi, Heat transfer and fluid flow characteristics
of spanwise-periodic corrugated Ducts, Int. J. Heat Mass Transfer 23 (1980),
471-481.

C. J. Ribbens, L. T. Watson, and C. Y. Wang, Steady viscous flow in a trian-
gular cavity , J. Comp. Phys. 112 (1994), 173-181.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method,
Elsevier, 2005.

Nuclear Fuel Cycle Strategy Research Lab
Korea Atomic Energy Research Institute
Daejeon 305-353, Republic of Korea
E-mail: sjkw@kaeri.re.kr

k%

Department of Mathematics
Chungnam University

Daejeon 305-764, Republic of Korea
E-mail: soh@cnu.ac.kr

ko

Department of Mathematics

Chungbuk University

Cheongju 361-763, Republic of Korea
E-mail: gmjae@cbucc.chungbuk.ac.kr

kkksk

Department of Mathematics
Chungnam University

Daejeon 305-764, Republic of Korea
E-mail: sychung@cnu.ac.kr



