• Title/Summary/Keyword: finite difference time domain

Search Result 464, Processing Time 0.034 seconds

Simultaneous Switching Noise Reduction Technique in Multi-Layer Boards using Conductive Dielectric Substrate (전도성 유전기판을 이용한 다층기판에서의 Simultaneous Switching Noise 감소 기법)

  • 김성진;전철규;이해영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.9-14
    • /
    • 1999
  • In this paper, we proposed a simultaneous switching noise (SSN) reduction technique in multi-layer boards (MLB) for high-speed digital applications and analyzed it using the Finite Difference Time Domain (FDTD) method. The new structure using conductive dielectric substrates is effective for the reduction of SSN couplings and resonances. The uniform insertion of the conducive layer reduced the SSN coupling and resonance by 85% and the partial insertion only around the edges reduced by 55% respectively.

  • PDF

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.

Parammeter Optimization of the Electromagnetically Coupled Broadband Microstrip Antenna by Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 전자기 결합 광대역 마이크로스트립 안테나의 파라메타 최적화)

  • 김정렬;윤현보
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 1995
  • In this paper, Finite Difference Time Domain (FDTD) method is used to analyze characteristics of the electromagnetically coupled broadband microstrip antenna, and to optimize the antenna parameters. By using short tuning stub in feedline, electromagnetically coupled microstrip antenna shows broadband (approximatcly equal 13%) characteristics, and the characteristics are varied as a function of length, width, and position of the tuning stub. Operating frequency, return loss, VSWR and input impedance are calculated by Fourier transforming the time domain results. Measurement data from fabricated electromagnetically coupled microstrip antenna are compared with FDTD results and are shown to be in good agreement. After optimization of the parameters, maximum bandwidth of about 15% is achieved.

  • PDF

IMPLICIT DIFFERENCE APPROXIMATION FOR THE TWO-DIMENSIONAL SPACE-TIME FRACTIONAL DIFFUSION EQUATION

  • Zhuang, Pinghui;Liu, Fawang
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.269-282
    • /
    • 2007
  • In this paper, we consider a two-dimensional fractional space-time diffusion equation (2DFSTDE) on a finite domain. We examine an implicit difference approximation to solve the 2DFSTDE. Stability and convergence of the method are discussed. Some numerical examples are presented to show the application of the present technique.

Efficient 3D Acoustic Wave Propagation Modeling using a Cell-based Finite Difference Method (셀 기반 유한 차분법을 이용한 효율적인 3차원 음향파 파동 전파 모델링)

  • Park, Byeonggyeong;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this paper, we studied efficient modeling strategies when we simulate the 3D time-domain acoustic wave propagation using a cell-based finite difference method which can handle the variations of both P-wave velocity and density. The standard finite difference method assigns physical properties such as velocities of elastic waves and density to grid points; on the other hand, the cell-based finite difference method assigns physical properties to cells between grid points. The cell-based finite difference method uses average physical properties of adjacent cells to calculate the finite difference equation centered at a grid point. This feature increases the computational cost of the cell-based finite difference method compared to the standard finite different method. In this study, we used additional memory to mitigate the computational overburden and thus reduced the calculation time by more than 30 %. Furthermore, we were able to enhance the performance of the modeling on several media with limited density variations by using the cell-based and standard finite difference methods together.

An Efficient Time-Domain Electromagnetic Solution Using the Time-Domain Variable Resolution Concept (가변 시간 분해능 시간 영역 전자파 해석법)

  • Kim Hyung-Hoon;Park Jong-Il;Kim Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.890-894
    • /
    • 2006
  • To make the best use of known characteristics of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method such as unconditional stability and modeling accuracy, an efficient time domain solution with variable time-step size is proposed. Numerical experiment shows that a time-step size for a given mesh size can be increased preserving a desired numerical accuracy over frequencies of interest. The proposed method can be used to analyze electromagnetic problems with reduced computation time.

Effects of Space Increment and Time Step to the Accuracy of the Implicit Finite Difference Method in a Two-Dimensional Transient Heat Conduction Problem (이차원과도열전도에 대한 음함수형 유한차분법의 정도에 미치는 공간증분 및 시간간격의 영향)

  • CHO Kwon-Ok;LEE Yong-Sung;OH Hoo-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 1985
  • The study on computation time, accuracy, and convergency characteristic of the implicit finite difference method is presented with the variation of the space increment and time step in a two-dimensional transient heat conduction problem with a dirichlet boundary condition. Numerical analysis were conducted by the model having the conditions of the solution domain from 0 to 3m, thermal diffusivity of 1.26 $m^2/h$, initial condition of 272 K, and boundary condition of 255.4 K. The results obtained are summarized as follows : 1) The degree of influence with respect to the accuracy of the time step and space increment in the alternating-direction implicit method and Crank-Nicholson implicit method were relatively small, but in case of the fully implicit method showed opposite tendency. 2) To prescribe near the zero for the space increment and tine step in a two dimensional transient problem were good in a accuracy aspect but unreasonable in a computational time aspect. 3) The reasonable condition of the space increment and the time step considering accuracy and computation time could be generalized with the Fourier modulus increment, F, ana dimensionless space increment, X, irrespective of the solution domain.

  • PDF

Time Domain Acoustic Propagation Analysis Using 2-D Pseudo-spectral Modeling for Ocean Environment (해양환경에서 2차원 유사 스펙트럴 모델링을 이용한 시간 영역 음 전달 해석)

  • Kim Keesan;Lee Keunhwa;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.576-582
    • /
    • 2004
  • A computer code that is based on the Pseudo-spectral finite difference algorithm using staggered grid is developed for the wave propagation modeling in the time domain. The advantage of a finite difference approximation is that any geometrically complicated media can be modeled. Staggered grids are advantageous as it provides much more accuracy than using a regular grid. Pseudo-spectral methods are those that evaluate spatial derivatives by multiplying a wavenumber by the Fourier transform of a pressure wave-field and performing the inverse Fourier transform. This method is very stable and reduces memory and the number of computations. The synthetic results by this algorithm agree with the analytic solution in the infinite and half space. The time domain modeling was implemented in various models. such as half-space. Pekeris waveguide, and range dependent environment. The snapshots showing the total wave-field reveals the Propagation characteristic or the acoustic waves through the complex ocean environment.