An Efficient Time-Domain Electromagnetic Solution Using the Time-Domain Variable Resolution Concept

가변 시간 분해능 시간 영역 전자파 해석법

  • Kim Hyung-Hoon (Department of Electrical and Computer Engineering, Hanyang University) ;
  • Park Jong-Il (Department of Electrical and Computer Engineering, Hanyang University) ;
  • Kim Hyeong-Dong (Department of Electrical and Computer Engineering, Hanyang University)
  • 김형훈 (한양대학교 전자통신컴퓨터공학부) ;
  • 박종일 (한양대학교 전자통신컴퓨터공학부) ;
  • 김형동 (한양대학교 전자통신컴퓨터공학부)
  • Published : 2006.09.01

Abstract

To make the best use of known characteristics of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method such as unconditional stability and modeling accuracy, an efficient time domain solution with variable time-step size is proposed. Numerical experiment shows that a time-step size for a given mesh size can be increased preserving a desired numerical accuracy over frequencies of interest. The proposed method can be used to analyze electromagnetic problems with reduced computation time.

본 논문은 무조건 안정의 특징을 갖는 ADI-FDTD의 특성을 효과적으로 적용하기 위한 가변 분해능 시간 영역 전자파 해석법을 제안한다. 제안된 해석법은 관심 주파수 영역에서 정확도를 유지하면서 분해 시간 간격을 증가시켜 계산 시간을 감소시킬 수 있다.

Keywords

References

  1. T. Namiki, 'A new FDTD algorithm based on alternating direction implicit method', IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003-2007, Oct. 1999 https://doi.org/10.1109/22.795075
  2. F. Zheng, Z. Chen, and J. Zhang, 'Toward the development of a three-dimensional unconditionally stable finite difference time-domain method', IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1550-1558, Sep. 2000 https://doi.org/10.1109/22.869007
  3. G. Sun, C. W. Trueman, 'Some fundamental characteristics of the one-dimensional alternate-directionimplicit finite-difference time-domain method', IEEE Trans. Microwave Theory Tech., vol. 52, pp. 46-52, Jan. 2004 https://doi.org/10.1109/TMTF.2003.821230
  4. F. Zheng, Z. Chen, 'Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method', IEEE Trans. Microwave Theory and Tech., vol. 49, pp. 1006-1009, May 2001 https://doi.org/10.1109/22.920165
  5. S. G. Garcia, T. W. Lee, and S. C. Hagness, 'On the accuracy of the ADI-FDTD method', IEEE Antennas and Wireless Propgat. Lett., vol. 1, pp. 31-34, 2002 https://doi.org/10.1109/LAWP.2002.802583
  6. A. P. Zhao, 'The influence of the time step on the numerical dispersion error of an unconditionally stable 3-D ADI-FDTD method: A simple and unified approach to determine the maximum allowable time step required by a desired numerical dispersion accuracy', Microwave and Optical Tech. Lett., vol. 35, pp. 60-65, Oct. 2002 https://doi.org/10.1002/mop.10516
  7. G. Sun, C. W. Trueman, 'A simple method to determine the time-step size to achieve a desired dispersion accuracy in ADI-FDTD', Microwave and Optical Tech. Lett., vol. 40, pp. 487-490, Mar. 2004 https://doi.org/10.1002/mop.20012
  8. H. Kim, H. Ling, 'Wavelet analysis of electromagnetic backscattering data', Electronics Lett., vol. 28, pp. 279-281, Jan. 1992 https://doi.org/10.1049/el:19920172
  9. H. Kim, H. Ling, 'Wavelet analysis of radar echo from finite-size targets', IEEE Trans. Antennas Propagat., vol. 41, pp. 200-207, Feb. 1993 https://doi.org/10.1109/8.214611
  10. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000