• Title/Summary/Keyword: finite

Search Result 30,214, Processing Time 0.045 seconds

Three Dimensional Finite Element Analysis for Piezoelectric Transformer

  • Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.98-103
    • /
    • 2001
  • This paper presents the numerical analysis of piezoelectric devices using three-dimensional finite element analysis. The characteristic of piezoelectric transducer, such as mechanical displacement and electrical are analyzed and the validity is confirmed by experiments Applying the finite element routine to a piezoelectric transformer, the resonance features electrical impedance. the ratio of step-up voltage and vibration mode of piezoelectric transformer are calculated numerically By using three-dimensional finite element method effects of width variation to resonance features, electrical input impedance and the voltage step-up ratio for a piezoelectric transformer, can be considered in design procedure.

Optimization Techniques for Finite field Operations at Algorithm Levels (알고리즘 레벨 유한체 연산에 대한 최적화 연구)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.651-654
    • /
    • 2008
  • In finite field operations based on $GF(2^m)$, additions and subtractions are easily implemented. On the other hand, multiplications and divisions require mathematical elaboration of complex equations. There are two dominant way of approaching the solutions of finite filed operations, normal basis approach and polynomial basis approach, each of which has both benefits and weakness respectively. In this study, we adopted the mathematically feasible polynomial basis approach and suggest the optimization techniques of finite field operations based of mathematical principles.

  • PDF

A Study of 3-Dimension Plate- Elastic Foundation Interaction Analysis by Finite Element Method (판과 탄성지반의 상호작용을 고려한 3차원 유한요소해석에 관한 연구)

  • 황창규;강재순
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 1992
  • This paper is a basic study of three by finite element method. Plate and medium. Plate is discretized 4 node p melt. At the interface between plate a melt is adopted for considering plate Measured vertical displacement out by plate foundation interaction finite zion is followed as ; 1. as being interface element adopts dation interaction finite element 2. As being interface element and platefoundation interaction finite 3. As being interface element adopte Therefore, post processing that as.

  • PDF

Updating of a Finite Element Model with a Damping Effect Using Frequency Response Functions (주파수응답함수를 이용한 감쇠가 있는 유한요소모형의 개선)

  • Lee, Geon-Myeong;Lee, Hyeong-Seok;Lee, Han-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.872-880
    • /
    • 2002
  • The finite element analysis is frequently used to predict dynamic responses of complex structures. Since the predicted responses often differ from experimentally measured ones, updating of the finite element models is performed to make the finite element results agree with the measured ones. Among several model updating methods, one is to use FRF(frequency response function) data without a modal analysis. This paper investigates characteristics of the model updating method in order to improve the method. The investigation is focused on how to obtain FRFs for unmeasured rotational displacements and how to consider damping. For the investigation simulated data and experimental data for a cantilever beam are used.

A POSTERIORI L(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS

  • Hou, Tianliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.321-341
    • /
    • 2013
  • In this paper, we discuss the a posteriori error estimates of the semidiscrete mixed finite element methods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order $k$ Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order $k(k{\geq}0)$. Using mixed elliptic reconstruction method, a posterior $L^{\infty}(L^2)$-error estimates for both the state and the control approximation are derived. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.

Finite element analysis of shear-critical reinforced concrete walls

  • Kazaz, Ilker
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.143-162
    • /
    • 2011
  • Advanced material models for concrete are not widely available in general purpose finite element codes. Parameters to define them complicate the implementation because they are case sensitive. In addition to this, their validity under severe shear condition has not been verified. In this article, simple engineering plasticity material models available in a commercial finite element code are used to demonstrate that complicated shear behavior can be calculated with reasonable accuracy. For this purpose dynamic response of a squat shear wall that had been tested on a shaking table as part of an experimental program conducted in Japan is analyzed. Both the finite element and material aspects of the modeling are examined. A corrective artifice for general engineering plasticity models to account for shear effects in concrete is developed. The results of modifications in modeling the concrete in compression are evaluated and compared with experimental response quantities.

Experimental analysis on FEM definition of backfill-rectangular tank-fluid system

  • Cakir, Tufan;Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.165-185
    • /
    • 2013
  • In the present study, the numerical and experimental investigations were performed on the backfill- exterior wall-fluid interaction systems in case of empty and full tanks. For this, firstly, the non-linear three dimensional (3D) finite element models were developed considering both backfill-wall and fluid-wall interactions, and modal analyses for these systems were carried out in order to acquire modal frequencies and mode shapes by means of ANSYS finite element structural analysis program. Secondly, a series of field tests were fulfilled to define their modal characteristics and to compare the results from proposed approximation in the selected structures. Finally, comparing the theoretical predictions from the finite element models to results from experimental measurements, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verifications provide strong support for the finite element models and the proposed procedures themselves are the meritorious approximations to the real problem, and this makes the models appealing for use in further investigations.

Analysis of composite plates using various plate theories -Part 2: Finite element model and numerical results

  • Bose, P.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.727-746
    • /
    • 1998
  • Finite element models and numerical results are presented for bending and natural vibration using the unified third-order plate theory developed in Part 1 of this paper. The unified third-order theory contains the classical, first-order, and other third-order plate theories as special cases. Analytical solutions are developed using the Navier and L$\acute{e}$vy solution procedures (see Part 1 of the paper). Displacement finite element models of the unified third-order theory are developed herein. The finite element models are based on $C^0$ interpolation of the inplane displacements and rotation functions and $C^1$ interpolation of the transverse deflection. Numerical results of bending and natural vibration are presented to evaluate the accuracy of various plate theories.

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.