• Title/Summary/Keyword: finite/infinite type

Search Result 63, Processing Time 0.03 seconds

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

THE ${M_1},{M_/2}/G/l/K$ RETRIAL QUEUEING SYSTEMS WITH PRIORITY

  • Choi, Bong-Dae;Zhu, Dong-Bi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.691-712
    • /
    • 1998
  • We consider an M$_1$, M$_2$/G/1/ K retrial queueing system with a finite priority queue for type I calls and infinite retrial group for type II calls where blocked type I calls may join the retrial group. These models, for example, can be applied to cellular mobile communication system where handoff calls have higher priority than originating calls. In this paper we apply the supplementary variable method where supplementary variable is the elapsed service time of the call in service. We find the joint generating function of the numbers of calls in the priority queue and the retrial group in closed form and give some performance measures of the system.

  • PDF

INVARIANCE OF DOMAIN THEOREM FOR DEMICONTINUOUS MAPPINGS OF TYPE ( $S_+$)

  • Park, Jong-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • Wellknown invariance of domain theorems are Brower's invariance of domain theorem for continuous mappings defined on a finite dimensional space and Schauder-Leray's invariance of domain theorem for the class of mappings I+C defined on a infinite dimensional Banach space with I the identity and C compact. The two classical invariance of domain theorems were proved by applying the homotopy invariance of Brower's degree and Leray-Schauder's degree respectively. Degree theory for some class of mappings is a useful tool for mapping theorems. And mapping theorems (or surjectivity theorems of mappings) are closely related with invariance of domain theorems for mappings. In[4, 5], Browder and Petryshyn constructed a multi-valued degree theory for A-proper mappings. From this degree Petryshyn [9] obtained some invariance of domain theorems for locally A-proper mappings. Recently Browder [6] has developed a degree theory for demicontinuous mapings of type ( $S_{+}$) from a reflexive Banach space X to its dual $X^{*}$. By applying this degree we obtain some invariance of domain theorems for demicontinuous mappings of type ( $S_{+}$). ( $S_{+}$).

  • PDF

Determination of optimal parameters for perforated plates with quasi-triangular cutout by PSO

  • Jafari, Mohammad;Hoseyni, Seyed A. Mahmodzade;Chaleshtari, Mohammad H. Bayati
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.795-807
    • /
    • 2016
  • This study tries to examine the effect of different parameters on stress analysis of infinite plates with central quasi-triangular cutout using particle swarm optimization (PSO) algorithm and also an attempt has been made to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of cutout on isotropic and orthotropic plates. Basis of the presented method is expansion of analytical method conducted by Lekhnitskii for circular and elliptical cutouts. Design variables in this study include fiber angle, load angle, curvature radius of the corner of the cutout, rotation angle of the cutout and at last material of the plate. Also, diagrams of convergence and duration time of the desired problem are compared with Simulated Annealing algorithm. Conducted comparison is indicative of appropriateness of this method in optimization of the plates. Finite element numerical solution is employed to examine the results of present analytical solution. Overlap of the results of the two methods confirms the validity of the presented solution. Results show that by selecting the aforementioned parameters properly, less amounts of stress can be achieved around the cutout leading to an increase in load-bearing capacity of the structure.

A Globally Stabilizing Model Predictive Controller for Neutrally Stable Linear Systems with Input Constraints

  • Yoon, Tae-Woong;Kim, Jung-Su;Jadbabaie, Ali;Persis, Claudio De
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1901-1904
    • /
    • 2003
  • MPC or model predictive control is representative of control methods which are able to handle physical constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global aymptotic stability can be obtained; until recently, use of infinite horizons was thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately been suggested for neutrally stable continuous-time systems using a non-quadratic terminal cost which consists of cubic as well as quadratic functions of the state. The idea originates from the so-called small gain control, where the global stability is proven using a non-quadratic Lyapunov function. The newly developed finite-horizon MPC employs the same form of Lyapunov function as the terminal cost, thereby leading to global asymptotic stability. A discrete-time version of this finite-horizon MPC is presented here. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of the method.

  • PDF

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

Introduction to the Indian Buffet Process: Theory and Applications (인도부페 프로세스의 소개: 이론과 응용)

  • Lee, Youngseon;Lee, Kyoungjae;Lee, Kwangmin;Lee, Jaeyong;Seo, Jinwook
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.251-267
    • /
    • 2015
  • The Indian Buffet Process is a stochastic process on equivalence classes of binary matrices having finite rows and infinite columns. The Indian Buffet Process can be imposed as the prior distribution on the binary matrix in an infinite feature model. We describe the derivation of the Indian buffet process from a finite feature model, and briefly explain the relation between the Indian buffet process and the beta process. Using a Gaussian linear model, we describe three algorithms: Gibbs sampling algorithm, Stick-breaking algorithm and variational method, with application for finding features in image data. We also illustrate the use of the Indian Buffet Process in various type of analysis such as dyadic data analysis, network data analysis and independent component analysis.

A Study on Feasibility of Surface Wave Application for the Assessment of Physical Properties of Dam (표면파 적용 댐체 물성 조사 타당성 연구)

  • Kim, Hyoung-Soo;Min, Dong-Ju;Kim, Jung-Yul;Ha, Ik-Soo;Oh, Suk-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.384-391
    • /
    • 2005
  • Three dimensional finite difference elastic wave model was developed to estimate the feasibility of surface wave applications in geotechnical problems. The wave motions calculated by the developed program in this study shows good agreement with well known analytic solutions. The surface wave motions calculated from layered dam type structure can be interpreted as a infinite layer structure using dispersion curve but it is need a special source of which high energy in frequency band lower than 10 Hz to get information of physical properties in few tens meter deep. The source which has high energy in the low frequency band, however, can give defect on dam and this will make some limitation in real field applications. The dispersion curves calculated from the surface wave motion of homogeneous and center core type dam models will give rise to fatal errors if the conventional infinite layer structure used in their interpretation because the surrounding materials and boundaries of dam make some distortion in dispersion curve of surface wave. So it is strongly recommended to use three dimensional inversion model for correct interpretation and estimation of physical properties of dam materials.

  • PDF

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Musa-Okumo and Power-law Type (Musa-Okumoto와 Power-law형 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.483-490
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do likelihood inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The infinite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of Musa-Okumo and Power law type property.