• Title/Summary/Keyword: finger vein recognition

Search Result 26, Processing Time 0.032 seconds

Finger Vein Recognition Using Generalized Local Line Binary Pattern

  • Lu, Yu;Yoon, Sook;Xie, Shan Juan;Yang, Jucheng;Wang, Zhihui;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1766-1784
    • /
    • 2014
  • Finger vein images contain rich oriented features. Local line binary pattern (LLBP) is a good oriented feature representation method extended from local binary pattern (LBP), but it is limited in that it can only extract horizontal and vertical line patterns, so effective information in an image may not be exploited and fully utilized. In this paper, an orientation-selectable LLBP method, called generalized local line binary pattern (GLLBP), is proposed for finger vein recognition. GLLBP extends LLBP for line pattern extraction into any orientation. To effectually improve the matching accuracy, the soft power metric is employed to calculate the matching score. Furthermore, to fully utilize the oriented features in an image, the matching scores from the line patterns with the best discriminative ability are fused using the Hamacher rule to achieve the final matching score for the last recognition. Experimental results on our database, MMCBNU_6000, show that the proposed method performs much better than state-of-the-art algorithms that use the oriented features and local features, such as LBP, LLBP, Gabor filter, steerable filter and local direction code (LDC).

Enhanced Vein Detection Method by Using Image Scaler Based on Poly Phase Filter (Poly Phase Filter 기반의 영상 스케일러를 이용한 개선 된 정맥 영역 추출 방법)

  • Kim, HeeKyung;Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.734-739
    • /
    • 2018
  • Fingerprint recognition and iris recognition, which are one of the biometric methods, are easily influenced by external factors such as sunlight. Recently, finger vein recognition is used as a method utilizing internal features. However, for accurate finger vein recognition, it is important to clearly separate vein and background regions. However, it is difficult to separate the vein region and background region due to the abnormalized illumination, and a method of separating the vein region and the background region after normalized the illumination of the input image has been proposed. In this paper, we proposed a method to enhance the quality improvement and improve the processing time compared to the existing finger vein recognition system binarization and labeling method of the image including the image stretching process based on the existing illumination normalization method.

Virtual core point detection and ROI extraction for finger vein recognition (지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The finger vein recognition technology is a method to acquire a finger vein image by illuminating infrared light to the finger and to authenticate a person through processes such as feature extraction and matching. In order to recognize a finger vein, a 2D mask-based two-dimensional convolution method can be used to detect a finger edge but it takes too much computation time when it is applied to a low cost micro-processor or micro-controller. To solve this problem and improve the recognition rate, this study proposed an extraction method for the region of interest based on virtual core points and moving average filtering based on the threshold and absolute value of difference between pixels without using 2D convolution and 2D masks. To evaluate the performance of the proposed method, 600 finger vein images were used to compare the edge extraction speed and accuracy of ROI extraction between the proposed method and existing methods. The comparison result showed that a processing speed of the proposed method was at least twice faster than those of the existing methods and the accuracy of ROI extraction was 6% higher than those of the existing methods. From the results, the proposed method is expected to have high processing speed and high recognition rate when it is applied to inexpensive microprocessors.

A Multimodal Fusion Method Based on a Rotation Invariant Hierarchical Model for Finger-based Recognition

  • Zhong, Zhen;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.131-146
    • /
    • 2021
  • Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.

Design and Implementation of Side-Type Finger Vein Recognizer (측면형 지정맥 인식기 설계 및 구현)

  • Kim, Kyeong-Rae;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.159-168
    • /
    • 2021
  • As the information age enters, the use of biometrics using the body is gradually increasing because it is very important to accurately recognize and authenticate each individual's identity for information protection. Among them, finger vein authentication technology is receiving a lot of attention because it is difficult to forge and demodulate, so it has high security, high precision, and easy user acceptance. However, the accuracy may be degraded depending on the algorithm for identification or the surrounding light environment. In this paper, we designed and manufactured a side-type finger vein recognizer that is highly versatile among finger vein measuring devices, and authenticated using the deep learning model of DenseNet-201 for high accuracy and recognition rate. The performance of finger vein authentication technology according to the influence of the infrared light source used and the surrounding visible light was analyzed through simulation. The simulations used data from MMCBNU_6000 of Jeonbuk National University and finger vein images taken directly were used, and the performance were compared and analyzed using the EER.

A Method for Improving Vein Recognition Performance by Illumination Normalization (조명 정규화를 통한 정맥인식 성능 향상 기법)

  • Lee, Eui Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.423-430
    • /
    • 2013
  • Recently, the personal identification technologies using vein pattern of back of the hand, palm, and finger have been developed actively because it has the advantage that the vein blood vessel in the body is impossible to damage, make a replication and forge. However, it is difficult to extract clearly the vein region from captured vein images through common image prcessing based region segmentation method, because of the light scattering and non-uniform internal tissue by skin layer and inside layer skeleton, etc. Especially, it takes a long time for processing time and makes a discontinuity of blood vessel just in a image because it has non-uniform illumination due to use a locally different adaptive threshold for the binarization of acquired finger-vein image. To solve this problem, we propose illumination normalization based fast method for extracting the finger-vein region. The proposed method has advantages compared to the previous methods as follows. Firstly, for remove a non-uniform illumination of the captured vein image, we obtain a illumination component of the captured vein image by using a low-pass filter. Secondly, by extracting the finger-vein path using one time binarization of a single threshold selection, we were able to reduce the processing time. Through experimental results, we confirmed that the accuracy of extracting the finger-vein region was increased and the processing time was shortened than prior methods.

Heart Rate Signal Extraction by Using Finger vein Recognition System (지정맥 인식 시스템을 이용한 심박신호 검출)

  • Bok, Jin Yeong;Suh, Kun Ha;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.701-709
    • /
    • 2019
  • Recently, heart rate signal, which is one of biological signals, have been used in various fields related to healthcare. Conventionally, most of the proposed heart rate signal detection methods are contact type methods, but there is a problem of discomfort that the subject have to contact with the device. In order to solve the problem, detection study by non-contact method has been progressed recently. The detected heart rate signal can be used for finger vein liveness detection and various application using heart rate. In this paper, we propose a method to obtain heart rate signal by using finger vein imaging system. The proposed method detected the signal from the changes of the brightness value in the time domain of the infrared finger vein images and converted it into the frequency domain using the image processing algorithm. After the conversion, we removed the noise not related to the heart rate signal through band-pass filtering. In order to evaluate the accuracy of the signal, we analyzed the correlation with the signal obtained simultaneously with the finger vein acquisition device and contact type PPG sensor approved by KFDA. As a result, it was possible to confirm that the heart rate signal detected in non-contact method through the finger vein image coincides with the waveform of actual heart rate signal.

The improved pre-treatment method for the finger vein pattern (지정맥 패턴 인식을 위한 개선된 전처리 방법)

  • Lee, Sunbum;Kang, Bongsoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.365-367
    • /
    • 2016
  • Recently, the importance of personal information security has emerged. In particular, the importance of biometrics such as voice recognition, fingerprint recognition, face recognition has been highlighted in various fields such as access control, banking security, personal PC security and so on. But if such conventional security techniques are likely to be recognized by an external factor failure. In contrast, if the vein recognition is impossible to copy and counterfeit. Therefore less likely to fail due to external factors has the advantage. In this paper, propose a preprocessing method to improve on the existing vein pattern recognition with high reliability than existing biometric technologies.

  • PDF

A Development of Framework for Selecting Labor Attendance Management System Considering Condition of Construction Site (건설 현장 특성을 고려한 출역관리시스템 선정 프레임워크 개발)

  • Kim, Seong-Ah;Chin, Sang-Yoon;Jang, Moon-Seok;Jung, Choong-Won;Choi, Cheol-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.60-69
    • /
    • 2015
  • Labor attendance management has traditionally been carried out by writing a table for checking an attendance of labor, which requires a lot of time and effort. As electronic devices with additions such as barcodes, Quick Response codes, and Radio Frequency Identification(RFID) have been developed, however, automated labor attendance management systems have appeared. Recently, various types of labor recognition devices converged with biometrics (fingerprint, vein, face recognition, etc.) have been released. However, although these devices can be used to check attendance automatically, there is insufficient guidance when it comes to selecting the appropriate labor attendance management system for construction sites. Therefore, this study proposed a decision framework to determine which labor attendance management system would be suitable for a construction site and to select the labor recognition device. This study investigated different labor recognition devices, focusing on how they worked, and tested the performance of devices and their usability for construction labor attendance management. The test results showed that RFID is most suitable when verifying the attendance of many laborers over a short period of time. The devices for hand vein and fingerprint recognition did not function when there was a foreign material such as cement or paint on the laborer's hand, except for a deformed finger. Reflecting these test results, this study suggested a framework for selecting a labor attendance system and recognition device; this is expected to contribute to the development of more efficient labor management systems.