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Abstract 
 

Finger vein images contain rich oriented features. Local line binary pattern (LLBP) is a good 
oriented feature representation method extended from local binary pattern (LBP), but it is 
limited in that it can only extract horizontal and vertical line patterns, so effective information 
in an image may not be exploited and fully utilized. In this paper, an orientation-selectable 
LLBP method, called generalized local line binary pattern (GLLBP), is proposed for finger 
vein recognition. GLLBP extends LLBP for line pattern extraction into any orientation. To 
effectually improve the matching accuracy, the soft power metric is employed to calculate the 
matching score. Furthermore, to fully utilize the oriented features in an image, the matching 
scores from the line patterns with the best discriminative ability are fused using the Hamacher 
rule to achieve the final matching score for the last recognition. Experimental results on our 
database, MMCBNU_6000, show that the proposed method performs much better than 
state-of-the-art algorithms that use the oriented features and local features, such as LBP, LLBP, 
Gabor filter, steerable filter and local direction code (LDC). 
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1. Introduction 

Finger vein recognition system, which is convenient, non-invasive and high-security [1], has 
attracted considerable attentions in the past decade. Finger veins are subcutaneous structures 
that randomly develop into a network and spread along a finger. The physiological property of 
the veins makes them highly secure against counterfeiting and less affected by factors from the 
outer skin (such as skin disease, humidity, dirtiness) [2]. Furthermore, compared with the 
traditional biometrics (face, fingerprint, iris, gait, retina, palmprint, etc), finger vein 
recognition technology has benefits of small imaging device, low cost, easy collection of 
images with contactless operation, universality, and liveness [3, 4]. Hence, finger vein 
recognition is considered to be one of the most promising solutions for personal identification 
in the future [5].  

Novel feature representation is an important branch of the research on finger vein 
identification. To a large extent, the effectiveness of a feature representation method 
determines the performance of a finger vein identification system. Vein-pattern-based feature 
extraction methods are very popular and have developed a lot in the recent years [6-9]. For 
example, Miura et al. proposed two methods for finger vein pattern extraction. One uses 
repeated line tracking [6] and the other one is based on the local maximum curvature [7]. To 
reduce the dependence on parameters in the previous methods, Song et al. presented a finger 
vein pattern extraction method using mean curvature. It considers the vein image as a 
geometric shape and then locates the valley-like structures with negative mean curvatures [8]. 
Xie et al. introduced a finger vein pattern extraction method based on Guided Gabor filter [9]. 
These methods have good performance under the assumption that the blood vessel networks 
are segmented properly. However, segmentation errors may occur due to the low quality of 
finger vein images caused by uneven illumination [10], and skin scattering problems [11]. 
Moreover, the accuracy of vein segmentation is also easily affected by the influences from 
image translation, rotation, and scale. Hence, recognition performance using these methods 
will be degraded when the vein networks are not segmented properly.  

To alleviate the difficulty of segmentation, some investigations have been focused on 
extracting the local features in finger vein images. In one approach, local binary pattern is 
extracted for finger recognition [12, 13]. Inspired by the better performance using the local 
line binary pattern compared to LBP in face recognition [14], Bakhtiar et al. employed LLBP 
for finger vein recognition [15]. The main difference between LBP and LLBP is that LLBP 
applies the neighborhood shape with straight lines, rather than the square or circle shapes in 
LBP. The performance using LLBP is better than with LBP, since the veins are located inside 
the finger in the piecewise-linear style [15].  

However, LLBP is limited in that it extracts only horizontal and vertical line patterns. 
Since the veins are randomly developed inside a finger with various orientations, we believe 
that the line patterns extracted from horizontal and vertical orientations may not contain the 
most discriminative information[16]. In addition, finger vein images have rich orientation 
information as those in fingerprint images [17]. Therefore, to extract much more effective 
orientation features from the finger vein images and to better utilize them, in this paper, we 
propose an orientation-selectable feature representation method called generalized local line 
binary pattern (GLLBP). Fig. 1 shows the block diagram of the proposed method. A robust 
finger vein region of interest (ROI) localization method based on flexible segmentation is first 
employed for ROI localization [18]. Since the length of the line pattern is much greater than 
the diameter in LBP, GLLBP labels each point in an image by thresholding the points in a line 
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with the average gray value of the points in the line, except for the center pixel value. In 
addition, GLLBP has good orientation selectivity, which can be used to exploit line patterns 
from arbitrary orientations. In this case, the line pattern with the most discriminative ability 
can be investigated for matching. As shown in Fig. 1, features 

1
fθ  to 

n
fθ  denote the GLLBP 

features extracted from different orientations. To further enhance the matching accuracy and 
generalization ability, the soft power metric is employed for similarity measure of two GLLBP 
histograms. Furthermore, in order to sufficiently utilize the effective information in a finger 
vein image, matching scores with the most discriminative ability are fused using the Hamacher 
rule to increase the discriminative ability. Experimental results on our established database, 
MMCBNU_6000, have demonstrated that the proposed method exhibits excellent 
performance, compared with state-of-the-art methods that use the oriented and local features.  

 

 
Fig. 1. Block diagram illustration of the proposed method 

 
The rest of this paper is organized as follows: Section 2 reports the proposed GLLBP for 

finger vein feature extraction in detail. Matching score-level fusion with the selection of 
effective features is described in Section 3. Section 4 introduces the finger vein dataset and 
provides extensive experimental results to verify the superiority of the proposed method. The 
conclusion of this paper and ideas for further exploration are summarized in Section 5.  

2. Feature Extraction Using GLLBP 
In this section, we first review the technology of LLBP. Then, the proposed generalized local 
line binary pattern (GLLBP) is reported, followed by a discriminative analysis of GLLBP line 
patterns in different orientations.  
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2.1. Local Line Binary Pattern 
LBP is an effective texture representation method which has shown excellent performance in 
many comparative studies, in terms of both speed and discrimination performance [19, 20]. 
LBP codes have been extracted for finger vein recognition [12, 13]. In consideration of the 
case that finger veins are located inside a finger in the line style, Bakhtiar et al. employed 
LLBP for finger vein recognition in [15].  
 

 
Fig. 2. LLBP operator 

 
Unlike the square shapes used in LBP, the shapes in the LLBP operator are straight lines, 

which are shown in Fig. 2. LLBP consists of horizontal component and vertical component. 
For each component, LLBP labels each pixel of the image by thresholding the points in the 
line with the gray value of the center pixel. The magnitude of LLBP can be obtained by 
calculating the line binary codes from both components. An illustration of the LLBP operator 
is depicted in Fig. 2, and its definitions are given in Equations (1)-(5):  
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where , ,h N cLLBP  and , ,v N cLLBP  are LLBP values from the horizontal and vertical orientations, 
respectively. , ,m N cLLBP  represents the corresponding magnitude. ,h ig  and ,v ig  denote the 
gray values of pixels along with the horizontal and vertical lines, respectively. N  is the length 
of the line in pixels and ( 1) / 2c N= +  is the position of the center pixel. Hence, ,h cg  and ,v cg  
are the center pixel values in the horizontal and vertical line patterns, respectively. Function 

( )s ⋅  is a thresholding function as shown in Equations (4) and (5).  

Using Equations (1) and (4), the horizontal LLBP component ( , ,h N cLLBP ) extracts a binary 
code with 1N −  bits for each pixel in ROI. The same number of bits are extracted by the 
vertical LLBP component ( , ,v N cLLBP ) using Equations (2) and (5). Consequently, by 
concatenating the binary codes from , ,h N cLLBP  and , ,v N cLLBP , the total binary code of LLBP 
for each pixel is 2( 1)N −  bits. At the same time, the decimal value of each pixel can be 
produced by converting the binary codes.  

2.2. Proposed GLLBP 
As shown in Fig. 2, the length of the line pattern is much larger than the diameter in LBP, 
which depicts that there may be big differences between the center pixel value and other pixel 
values in the line. We believe that using the center pixel of the line for thresholding may not be 
the optimal method to describe the micro-line pattern for that pixel, especially for the line 
located near the edge and corner in a finger vein image. Hence, in GLLBP, to better represent 
the micro-line pattern for each pixel in an image, the average gray value of the points in the 
line is employed to replace the gray value of the center pixels for thresholding the points in the 
line.  

In addition, the LLBP operator considers only the horizontal and vertical orientations in an 
image, and in the square window (Fig. 2), only the pixels in the red rectangles are used for 
computing LLBP values. However, since some patterns such as finger vein patterns consist of 
piecewise-linear segments with different orientations and lengths, it is better to use features 
extracted by multiple orientation-based operators for improving the matching results.  

Inspired by the good power of Gabor filter [2, 9] in capturing specific texture 
characteristics from any orientation of an image, the proposed GLLBP extends LLBP for line 
pattern extraction into arbitrary orientation. Hence, GLLBP has superior orientation 
selectivity over LLBP. The circular templates, as used in LBP, are adopted in GLLBP to 
compute the GLLBP values. The line pattern from arbitrary orientation can be extracted using 
the following equations:  

1
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, 1,2, , .k k K
K
πθ = = ⋅⋅ ⋅                                                   (8)  

where θ  is the orientation, K  is the number of considered orientations, and ,igθ  are the gray 
values of points (represented in brown color in Fig. 3) in the line from orientation θ  except for 
the center point. ,averagegθ  denotes the average gray value of all the points in that line with 
orientation θ . For the pixels in the lines with horizontal and vertical orientations shown in 
Figs. 3(a) and 3(d), their pixel values are directly used to compute GLLBP values. The values 
of points (represented in brown color in Figs. 3(b), 3(c), 3(e) and 3(f)) in the line patterns from 
other orientations are first computed from their surrounding pixel values using bilinear 
interpolation. Then, the Equations (6) and (7) are applied to compute the GLLBP values of 
orientation θ .  

Fig. 3 depicts an example of circular templates employed to compute the GLLBP line 
patterns from 6 orientations. For each template, the black point in the center position denoted 
as ,averagegθ  is the average gray value of all points in the line. The ,igθ  points in brown will be 
compared with the ,averagegθ  for computing the GLLBP value.  

 

 
Fig. 3. Circular templates used for computing GLLBP line patterns from 6 orientations 

 
Table 1 shows GLLBP values of line patterns according to six different orientations for the 

same sub-block as the one used for showing how to obtain LLBP values in Fig. 2. Although 
they are displayed as integers, their real values are used for the computation. All the gray 
values of center points labeled in bold are ,averagegθ . 

 
Table 1. Line patterns from different orientations and their GLLBP values ( 6, 15K N= = ) 
θ  Line pattern ,15,8 (30,26)GLLBPθ  

0θ = 

  14 

30θ = 

  22 

60θ = 

  30 

90θ = 

  22 

120θ = 

  18 

150θ = 

  66 

 
To extract the line patterns with most discrimination ability and sufficiently utilize the 

information in a finger vein image, the discrimination abilities of line patterns from different 
orientations are evaluated. Fig. 4 depicts the localized ROIs and their corresponding GLLBP 
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images from 6 orientations. Since N  used to compute the GLLBP line pattern is 15, the gray 
values of GLLBP images are in the range of 0-255. The GLLBP images have the size of 
46×114. The white curves indicate the vein patterns in the ROIs. It is ascertained from Fig. 4 
that the GLLBP image in different orientation shows different output, which implies that the 
discrimination ability of the component varies with orientation. Furthermore, compared with 
GLLBP images at 30 ,  60 ,  90 ,  120  and 150 , GLLBP images from 0  have fewer veins.  
 

 
Fig. 4. ROI images and their corresponding GLLBP images with different orientations when 15N = : 

(a) ROI images, (b)-(g) their GLLBP images in different orientations, 0 , 30 , 60 , 90 , 120 , 150θ =       , 
respectively. 

2.3. Feature Extraction Using GLLBP 
There are two methods which are commonly used for feature representation with LBP and its 
variations. One is to append the binary codes of each point consecutively to represent an image. 
The other is to use a histogram to represent the micro patterns in the LBP or LLBP image. The 
LBP or LLBP image is usually divided into non-overlapping sub-images to further investigate 
the local features from different parts of an image, followed by the concatenation of 
histograms from each sub-image. The first usage always has good performance under the 
assumption that ROIs are accurately segmented from the acquired image. However, 
segmented errors may occur due to the low qualities of finger vein images caused by uneven 
illumination [10] and skin scattering problems [11]. In addition, a dimensionality disaster 
always accompanies the first method, especially when the number of surrounding points is 
large. Therefore, the second usage that extracts the histograms from a GLLBP image is 
employed in this paper.  

The feature size of each GLLBP histogram from one orientation is  
 

( 1)/2
, , , ,( ) 2 ,N

H N m nLength GLLBP m nθ
+= × ×                            (9)  
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where θ  describes an orientation. N  denotes the length of a line pattern. m n×  indicates that 
a GLLBP image is divided into m n×  non-overlapping sub-images. The dimensionality of 
GLLBP histogram relies on the length of line pattern and the number of sub-images.  

3. Matching 

3.1. Matching Metric 

There are various metrics to evaluate the similarity of two histograms, such as histogram 
intersection, log-likelihood ration and chi-square. In this paper, an effective metric called soft 
power [20] is employed to compute the similarity of two histograms. For the soft power metric, 
an original histogram feature space is transformed into a new feature space, based on the 
Euclidean distance metric. The Euclidean metric in this space has the same characteristic as 
the chi-square metric in the histogram feature space, in that greater magnitude of the histogram 
corresponds to less dissimilarity of the patterns [20]. The soft power metric is defined as 
follows:  

2

1
( , , ) ( ) , [0,1],

n
k k

soft power i i
i

S X Y k X Y k
=

= − ∈∑                               (10)  

where X  and Y  are two histograms with n  bins.  
As shown in Equation (10), the soft power metric is also a generalized Euclidean metric, 

since it is the Euclidean metric if 1k = . The optimal value of k  can be investigated using the 
following equation:  

arg max( ( ( ))).optimal soft power
k

S accuracy S k=                                (11)  

3.2. Selection of Effective Features for Matching 
The more features are used, the better final results are. However, it takes 130.7 ms to extract 
one GLLBP component which is used as a feature in this paper and to involve it in matching 
process (refer to Table 7). Therefore, taking the matching accuracy, memory space, and the 
system processing time into consideration, in the proposed method, only some competive 
GLLBP components are used for finger vein recognition.  

As shown in Fig. 5, since the proposed method uses the matching score fusion method to get 
the better final result, its performance depends on how many and what kind of GLLBP 
components are really utilized. To select effective features for matching, we test the matching 
accuracy of the GLLBP line patterns from different orientations, respectively. As shown in 
Table 2, ‘center point value’ indicates that the gray value of the center point is used as ,cgθ  to 
calculate the GLLBP component, while ‘average value’ denotes that the average gray value of 
the points is used as ,averagegθ . Each GLLBP image is divided into 3 3×  non-overlapping 
sub-images to generate the final feature. The nearest neighbor classifier is applied for 
classification. First, it clearly demonstrates that the method using average gray value for 
thresholding has better matching accuracy than using a center point value in LLBP [15]. 
Furthermore, the generalization ability is also enhanced by using the proposed method, which 
has smaller standard variation values demonstrated in 10-folds cross validation. The GLLBP 
components at 30 , 60 , 90，120 , and 150  also have better performance than that at 0 , 
which is in accord with the vein richness of GLLBP images in Fig. 4. Additionally, Table 2 
shows that the GLLBP components at 60 , 120 , and 150  have better performance than 
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those at 0 , 30  and 90 , which verifies that the GLLBP components with the best 
discriminative ability are not at 0  and 90  (which are used in LLBP [15]). 

 

 
Fig. 5. Block diagram of GLLBP-based method proposed for finger vein recognition: (a) ROI image, 
(b) three circular templates for computing GLLBP line patterns at 60 ,120 ,150   , (c) corresponding 
GLLBP images, (d) orientation-based matching scores achieved using the soft power metric, and (e) 

fused matching score by the Hamacher rule. 
 

Table 2. Comparison of matching accuracy using 10-folds cross validation (standard variation) 
θ  Line pattern 

0  30  60  90  120  150  

Center point 
value 

95% 
(0.0395) 

97.03% 
(0.026) 

97.26% 
(0.0238) 

96.57% 
(0.0314) 

97.13% 
(0.024) 

97.52% 
(0.0223) 

Average value 96.57% 
(0.025) 

98.52% 
(0.0141) 

99.35% 
(0.0084) 

98.88% 
(0.0131) 

99.37% 
(0.0076) 

99.50% 
(0.0072) 

 
Based on the experimental analyses, as shown in Fig. 5, only the GLLBP line patterns 

generated only at 60 , 120 , and 150  for each ROI image are selected to participate in the 
proposed finger vein recognition process.  

3.3. Matching Score-Level Fusion  
As mentioned, the effective information is not fully utilized in LLBP. To solve this problem, 
the matching scores from GLLBP components with the most discriminative ability are fused 
to generate the last matching score. The GLLBP components at 60 , 120 , and 150  have 
shown the best matching accuracy. Hence, as shown in Fig. 5, the matching scores from these 
three orientations are fused to achieve the last matching score.  

The sum rule, max rule, and Hamacher rule are frequently used fusion rules for computing 
the final matching score. Suppose Sθ  denotes the corresponding matching score of an 
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orientation θ  computed using the soft power metric. The fused matching score can be 
calculated with different rules, such as:  

 
1 2: ,fSum S S Sθ θ= +                                                        (12)  

1 2: ( , ),fMaximum S Max S Sθ θ=                                              (13)  

1 2
1 2

1 2

: ( , ) .f
S SHamacher S Hamacher S S

S S
θ θ

θ θ
θ θ

= =
+

                            (14)  

 
In this paper, the Hamacher rule is employed to fuse the matching scores at 60 , 120 , and 

150 . Their fused score (60,120,150)fs  can be calculated as follows:  

 
150 60 120(60,120,150) ( , ( , ))fs Hamacher s Hamacher s s= .                   (15)  

4. Experimental Results 
In our previous work [21, 22], a finger vein image database named MMCBNU_6000 was 
established using a lab-made imaging device shown in Fig. 6. In this section, we present our 
experiments performed on our established finger vein dataset, MMCBNU_6000 [21, 22]. All 
the experiments are performed using MATLAB (R2010a) on a computer with an Intel Core 
i3-2120 processor and 4 GB of RAM.  

4.1. Lab-Made Finger Vein Imaging Device and Dataset 
As shown in Fig. 6(a), the lab-made finger vein imaging device is composed of a camera with 
an infrared light passing filter and an array of infrared LEDs of 850-nm wavelength. For the 
sake of improving the convenience for image collection, a holder is added on the back of the 
device, and a hole is punched that is larger than the thickness of the top of an adult’s finger. In 
addition, a USB interface is applied for the power supply to allow for portability. As shown in 
Fig. 6(b), the size of our device is 6.8×5.4×10.1 cm (length×width×height: cm), which is the 
same height as a small can of coffee (175 ml).  
 

 
Fig. 6. Lab-made imaging device: (a) The lab-made portable finger vein imaging device, and (b) an 

example of image collection for the left forefinger 
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The MMCBNU_6000 database consists of finger vein images captured from 100 

volunteers, from 20 different countries in Asia, Europe, Africa, and America. The ages of 
volunteers ranged from 16 to 72 years. Each subject was asked in the capturing process to 
provide images from his or her index finger, middle finger, and ring finger of both hands in a 
standard office environment. The collection for each of the 6 fingers is repeated 10 times to 
obtain 10 finger vein images. Hence, our finger vein database is composed of 6,000 images. 
Each image is stored in bmp format with 480×640 pixels size. The localized ROI image has a 
pixel size of 64×128.  

4.2. Investigation of Optimal Parameters 
The matching accuracy of the finger vein recognition system using the proposed method is 
dependent on four factors: the length ( N ) of the line pattern, the partitioning method for 
GLLBP image, the orientation of GLLBP component, and k  in the soft power metric. Since 
the discriminative ability of GLLBP components in different orientations has been evaluated 
in section 3.2, in this section, three experiments are designed to explore the optimal parameters. 
10-folds cross validation with the nearest neighbor classifier is employed for evaluating the 
recognition performance with varying parameters.  

4.2.1. Searching the Optimal N  

The first experiment is devised to explore the optimum length ( N ) of the line pattern. To do 
this, we calculate the matching accuracy of 10-folds cross validation from the vertical and 
horizontal GLLBP components. In this experiment, GLLBP images are divided into 2×2 
non-overlapping sub-images. The Euclidean distance metric is employed for similarity 
measuring. As shown in Table 3, it is ascertained that the matching accuracy of the proposed 
GLLBP is enhanced with increasing N . In addition, the standard variation is reduced, which 
illustrates the enhanced generalization ability.  
 

Table 3. Comparison of matching accuracy using 10-folds cross validation (standard variation) 
N  Matching accuracy of 10-folds cross validation 

0θ =   90θ =   
N =9 67.45% (0.0803) 90.88% (0.0514) 

N =11 75.67% (0.0715) 94.82% (0.0371) 
N =13 82% (0.0652) 96.68% (0.0256) 
N =15 86.57% (0.0573) 97.43% (0.0244) 
N =17 90.37% (0.0492) 97.80% (0.0231) 

 
In terms of processing time, the matching time keeps increasing with increasing N , which 

is shown in Table 4. This is attributed to increasing feature size. Furthermore, the feature 
extraction time for the components at 30 , 60 , 120 , and 150  is longer than those used for 
computing components at 0  and 90 , due to the operation of bilinear interpolation for 
computing the pixel value. As listed in Table 4, since the size of a GLLBP image is reduced 
with enhanced N , the feature extraction time is decreased. Taking the matching accuracy, 
processing time and feature size into consideration, N  is set to 15 in later experiments.  
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Table 4. Comparison of matching accuracy using 10-folds cross validation (standard variation) 
N  Feature size Processing time 

Feature extraction Matching 
N =9 42 2 2 2 128× × × =  105.8 ms 0.75 ms 

N =11 52 2 2 2 256× × × =  100.2 ms 1.2 ms 
N =13 62 2 2 2 512× × × =  97.6 ms 2.1 ms 
N =15 72 2 2 2 1024× × × =  95.3 ms 3.8 ms 
N =17 82 2 2 2 2048× × × =  93.4 ms 7.3 ms 

4.2.2. Searching the Optimal Partitioning Style 
The presented experiment in this part is done to investigate the optimal partitioning style. 
Since the feature size is heavily dependent on the number of sub-images, in this experiment, 
the number of sub-images is selected to be less than 10. Hence, to investigate the contribution 
of partitioning style on the recognition performance, five modes of partitioning are compared: 
1 1× (non-partitioning), 2 2× , 3 3× , 2 4× , and 4 2× .  

Fig. 7 depicts the matching accuracy of 10-folds cross validation with different partitioning 
styles. It is clearly shown in Fig. 7 that the matching accuracy is continually enhanced with 
increasing the number of sub-images. In addition, the extent of the increase extent is reduced 
with increasing number of sub-images. Hence, after careful consideration of the matching 
accuracy and feature dimensionality, the partitioning style is selected as 3 3× . 

 
Fig. 7. Matching accuracy of 10-folds cross validation with varying partitioning style 

 

4.2.3. Searching the Optimal k  

Since the matching accuracy of the proposed method also varies with the parameter k  in the 
soft power metric, an experiment is done to investigate the optimal k . Figs. 8(a) and 8(b) 
show the matching accuracy and the corresponding standard variances of GLLBP components 
at 30 , 60 , 90 , 120 , and 150  with the increasing value of k . 

It is clearly demonstrated in Figs. 8(a) and 8(b) that the matching accuracy of GLLBP 
components from these five orientations are enhanced with increasing value of k  from 0.05 to 
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0.55, while the corresponding standard variances keep decreasing in the same variation region 
of k . The matching accuracies of 10-folds cross validation for GLLBP components ( 0.55k = ) 
at 30 , 60 , 90 , 120 , and 150  are 99.70% (0.0038), 99.75% (0.0034), 99.56% (0.0058), 
99.75% (0.0029), and 99.75% (0.0035), respectively. This verifies that the soft power metric 
can improve the matching accuracy and generalization ability. With further increasing k  from 
0.55, the matching accuracies of the GLLBP histogram at these five orientations are 
decreasing, with enhanced standard variances. Also, the discriminative ability of GLLBP 
components using the soft power metric at each orientation is accord with the experimental 
results without using soft power metric shown in section 3.2.  

 

 
Fig. 8. Matching accuracy and standard variances of 10-folds cross validation for GLLBP histograms 

with 30 , 60 , 90 , 120 , 150θ =       and varying k : (a) matching accuracy, and (b) standard variances. 
 

By means of the using soft power metric, the matching accuracy is enhanced with an 
optimal parameter k . Meanwhile, the generalization ability of the system is also enhanced, 
which is verified by the decreasing value of the standard variance, as shown in Fig. 8(b). 
Inspired by this, we test whether the soft power metric employed in other partitioning styles 
can substantially improve the matching accuracy.  

Figs. 9, 10, and 11 depict the matching accuracy of GLLBP components at 60 , 120 , and 
150 , with two kinds of partitioning styles. The corresponding standard variances with 
varying k  are also displayed in these figures. It is illustrated that by using the soft power 
metric, the matching accuracy gaps between using the 2 2×  partitioning style and 3 3×  
partitioning style are reduced. Particularly, the differences are smallest when k  is 0.6. The 
smallest differences of the standard variance also occur in this case. When k  is 0.6, the 
performance gaps between dividing GLLBP image into 2 2×  sub-images and 3 3×  
sub-images are 0.12%, 0.37%, and 0.35% for the GLLBP histograms generated at 60 , 120 , 
and 150 , respectively. Therefore, the partitioning style is finally selected as 2 2× , in 
consideration of the matching accuracy, memory space, and processing time. k  is finally 
selected as 0.6. 
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Fig.9. Matching accuracy of 10-folds cross validation for GLLBP histogram generated using 

different partitioning styles and varying k , 60θ =   
 

 
Fig.10. Matching accuracy of 10-folds cross validation for GLLBP histogram generated using 

different partitioning styles and varying k , 120θ =   

 
Fig.11. Matching accuracy of 10-folds cross validation for GLLBP histogram generated using 

different partitioning styles and varying k , 150θ =   
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4.3. Matching Accuracy  
In order to sufficiently utilize the discriminative information in a finger vein image, in this 
section, we compare the matching accuracy obtained by fusing the matching scores at different 
orientations using different rules. In order to evaluate the performance enhancement after the 
matching scores fusion, the equal error rate (EER), which is the value where the false accept 
rate (FAR) is equal to the false reject rate (FRR) is adopted to evaluate the matching accuracies. 
To calculate EER, five finger vein images from one individual are selected as the training set, 
while the other five images are used as the test set. Hence, the training database and testing 
database are both composed of 3,000 images. Each finger is considered as an individual. The 
number of genuine matches is 3,000, and the number of imposter matches is 1,797,000 . 

 
Table 5. Comparison of EER after fusing the matching scores with different rules 

Fused scores Equal Error Rate (EER) 
Sum rule Maximum rule Hamacher 

(60,120)fs  0.80% 0.88% 0.77% 

(60,150)fs  0.80% 0.93% 0.70% 
(120,150)fs  1.07% 1.21% 0.91% 

(60,120,150)fs  0.73% 0.87% 0.61% 
(30,60,120,150)fs  0.69% 0.86% 0.58% 

 
Table 5 shows the comparison of EER after fusing the matching scores with different rules. 

The EERs for GLLBP components at 60 , 120 , and 150  are 1.20%, 1.36, and 1.40%, 
respectively, when k  is 0.6. It is clearly shown that no matter which kind of fusion rule is 
employed, the value of EER is reduced after fusing the matching scores. This verifies that the 
matching scores at different orientations are compatible and complementary. Furthermore, 
compared with other fusion rules, the EERs computed using the Hamacher rule are the 
smallest. Additionally, the more features are used, the better the final results are. However, 
although the matching performance using fused matching score (30,60,120,150)fs  is better 
than that of using (60,120,150)fs , it not cost-efficient since the small enhancement of 
matching accuracy also increases the processing time of 122.3 ms and feature dimensionality 
of 1024.  

4.4. Comparison in Matching Accuracy with Other Methods 
In order to evaluate the effectiveness of the proposed method, similar methods using oriented 
features and local features such as LBP [12], LLBP [15], local directional code (LDC) [23], 
Gabor filter [9], and steerable filter [24] are implemented for comparison. ERR is employed to 
evaluate the matching performance. For fair comparison, all the algorithms are performed on 
ROIs from MMCBNU_6000 without any post-processing like image denoising or image 
enhancement.  

As shown in Fig. 12, LDC-00 and LDC-45 represent the local directional codes extracted 
at 0 and 45 degrees. LLBP-15 devotes the LLBP codes at 0  and 90  are combined together 
when the length of line pattern is 15. In order to reduce processing time and storage space, size 
of ROI is reduced to its half size to generate LLBP codes. Same as the operation in [12] to get 
LBP codes, size of ROI is reduced to its one third to reduce the processing time and storage 
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space. For these three methods, original distance metrics employed in [12, 15, 23] are applied 
for fair comparison. Partition style to generate features used in the Gabor filter [9] and 
steerable filter [24] are the same as those in the references. For these two methods, the 
Euclidean distance is employed for matching.  
 

 
Fig.12. ROC curves using different methods 

 
Compared with the proposed method, LDC-00 and LDC-45 only extract the local 

directional codes from an image, while the LLBP codes extracted at 0 and 90 degrees cannot 
exploit the most discriminative features. In addition, the finger veins are randomly developed 
inside the finger in the line style, so the line pattern can better represent the oriented features in 
a finger vein image. Hence, the performance of LBP is poorer than that of the proposed 
method. Although the Gabor filter and steerable filter can exploit the local features in 8 
orientations, the discriminative ability is also poorer than those of the proposed method. 
Therefore, as the receiver operating characteristics (ROC) curves shown in Fig.12 and EER 
values listed in Table 6, the proposed method outperforms the other methods, which is 
demonstrated by the lowest EER of 0.61%. 

 
Table 6. EERs of different methods 

Methods LDC-00 
[23] 

LDC-45 
[23] 

LLBP-15 
[15] 

LBP 
[12] 

Gabor 
filter  
[9] 

Steerable 
filter 
[24] 

Proposed 
method 

EERs 3.15% 3.29% 4.96% 2.40% 2.66% 3.47% 0.61% 

4.5. Comparison in Average Processing Time with Other Methods 
In this part, we compare the average processing time of all the algorithms compared in Fig. 12. 
All the algorithms are computed for 6000 images in MMCBNU_6000. The feature extraction 
time includes the processing time for saving the features. As shown in Table 7, code-based 
methods have larger feature dimensionality than other methods. With larger size of feature for 
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storage, their processing time is also longer than other methods. Since the distance metrics 
applied in Gabor filter [9], steerable filter [24] and the proposed method are all Euclidean 
distance or its variation thereof, the matching time is only dependent on the feature 
dimensionality. Hence, the steerable filter has the smallest matching time due to its smallest 
feature size. The total processing time of the proposed method is 392.1 ms, including the 
feature extraction time and matching time for the GLLBP components at three orientations. 
However, the process of feature extraction and matching for each orientation can be finished 
with parallel calculation. Hence, with the parallel calculation, the processing time of the 
proposed method is 130.7 ms for a finger vein image. Note that the program code is actually 
not optimized, so it is possible to further reduce the processing time.  
 

Table 7. Comparison of average processing time and feature dimensionality 
Methods Average processing time (ms) Feature 

dimensionality Feature 
extraction time 

Matching time Total processing 
time 

LDC [23] 112.5 72.3 184.8 7680 
LLBP-15 [15] 176.6 104.3 280.9 22400 

LBP [12] 87.7 45.9 133.6 5760 
Gabor filter [9] 82 2.4 84.4 768 

Steerable filter [24] 27.8 0.5 28.3 160 
Proposed method 122.3×3 8.4×3 392.1 3072 

5. Conclusion 
This paper presented a finger vein recognition method named generalized local line binary 
pattern (GLLBP). GLLBP can exploit the line pattern in any orientation, so the discriminative 
ability of a GLLBP component from any orientation can be analyzed for further investigation. 
It was proved that the GLLBP components with the most discriminative ability are at 60, 120, 
and 150 degrees. Since the length of the line pattern in GLLBP is much larger than the radius 
in LBP, the gray value of the center pixel in the line was replaced by the average gray value of 
all the pixels in the line. The soft power metric was verified to provide superior performance in 
terms of matching accuracy and generalization ability. In addition, the matching-score fusion 
that fuses the scores at the 60, 120, and 150 degrees can effectively enhance the matching 
performance. Experimental results, performed on our collected MMCBNU_6000 database, 
showed the smallest EER of 0.61%, which had illustrated that the proposed method 
outperforms the existing methods such as LBP, LLBP, LDC, Gabor filter, and steerable filter. 
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