• Title/Summary/Keyword: finger force

Search Result 187, Processing Time 0.025 seconds

Exploration of Curvature of Three Dimensional Convex Object by Active Touch of Robot Hand (로봇손의 능동접촉에 의한 3차원 볼록한 물체의 곡률탐사)

  • Choi, Hyouk-Ryeol;Kim, Jin-Ho;Oh, Sang-Rok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.130-137
    • /
    • 1999
  • In this paper we propose a method of determining the local curvature of a three dimensional convex object using the force and torque information obtained from the active touch of a robot hand. A technique for estimating two dimensional curvature of a convex object are introduced and the way of computing the three dimensional curvature from the two dimensional vurvatures is presented. Also, we develop an experimental system consisting of a finger and verify the effectiveness of the proposed method experimentally.

  • PDF

Tuning of a Laterally Driven Microresonator using Electrostatic Comb Step Array (계단식 정전빗살구조물을 이용한 수평구동형 미소공진기의 주파수 조정)

  • Lee, Ki-Bang;Seo, Young-Ho;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1259-1265
    • /
    • 2003
  • We present a new post-fabrication frequency tuning method for laterally driven electrostatic microresonators using a DC-biased electrostatic comb array of linearly varied finger-length. The electrostatic tuning force and the equivalent stiffness, adjusted by the DC-biased tuning-comb array, have been formulated as functions of geometry and DC tuning voltage. A set of frequency-turnable microresonators has been designed and fabricated by 4-mask surface-micromachining process. The resonant frequency of the microfabricated microresonator has been measured for a varying tuning voltage at the reduced pressure of 1 torr. The maximum 3.3% reduction of the resonant frequency is achieved at the tuning voltage increase of 20V.

An Experiment of Structural Performance of Expansion Joint with Rotation Finger (가변형 핑거 조인트를 가지는 신축이음장치의 구조 성능 실험)

  • Yoo, Sung won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.170-175
    • /
    • 2018
  • For the seismic performance, it is necessary to prevent the destruction of the expansion joint device due to the appropriate deformation of the expansion joint device due to the seismic force. Recently, the hinge is installed on the fingering of the expansion joint device in Korea, New products are being developed. In this paper, we have experimentally evaluated the real scale resistance of the expansion joints with rotational finger joints against load at right angle to the bridge axis. Experimental results show that the maximum horizontal displacement is about 21.1mm for conventional stretch joints and 51.00mm for seismic stretch joints. It is presumed that the existing expansion joint test specimen is resistant to the load in a direction perpendicular to the throat axis, and then the bending and shear deformation of the finger are excessively generated and the fracture phenomenon is likely to occur. On the other hand, in the case of the seismic expansion joint, the deformation of the load due to the load is absorbed by the hinge of the finger with respect to the load in the direction perpendicular to the throat, so that only horizontal deformation in the direction of load action.

Usage Analysis and Design Development for Pilot Gloves (비행장갑설계를 위한 사용실태분석 및 개선안 개발)

  • Park, Ji-Eun;Jeon, Eun-Jin;Jeong, Jeong-Rim;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.764-770
    • /
    • 2009
  • This study was conducted to analyze the wearing condition on gloves for pilots and to suggest the developments for pilot gloves design. This survey was performed with 99 pilots and the questionnaires included items about discomfort, materials and problems when wearing pilot gloves. The respondents felt uncomfortable on the finger tip, the hollow area of the hand and the end of thumb when they move their hands with the gloves. They replied that the finger length, palm length, and circumference of the fingers did not match well. Also they complained there was severe abrasion in the tip of the thumb, finger tips and the middle of the palm of the gloves. The result of these analyses supports the following suggestions. It is necessary to improve durability by applying the additional materials to the severely worn parts. Punching on the glove materials could improve sweat rate and ventilation, and careful washing should be accompanied to prevent the occurrence of linters and transformation after laundering. And it is needed to prepare an accurate and more diversified size system and to design the gloves fitted to the individual hands. With these in mind, it is required to propose solutions for pilot gloves with reference to the survey results in order to design appropriate pilot gloves in terms of movement, size and material. It was concluded that an analysis of the wearing condition and developments are useful for ergonomics pilot gloves design.

A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation (미세 조작을 위한 압전 구동 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

An Approach to implement Virtual 3D-Touch using 2D-Touch based Smart Device through User Force Input Behavior Pattern (2D-Touch 스마트 디바이스에서 사용자 행동 패턴 분석을 통한 가상 3D-Touch 구현을 위한 방법)

  • Nam, ChoonSung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.41-51
    • /
    • 2016
  • The appearance of 3D-Touch interface provided the basis of a new interaction method between the users and the mob ile interface. However, only a few smartphones provide 3D-Touch features, and most of the 2D-Touch devices does not provide any means of applying the 3D-Touch interactions. This results in different user experiences between the two interaction methods. Thus, this research proposes the Virtual Force Touch method, which allows the users to utilize the 3D-Touch Interface on 2D-Touch based smart devices. This paper propose the suitable virtual force touch mechanism that is possible to realize users' inputs by calculating and analysis the force touch area of users' finger. This proposal is designed on customized smartphone device which has 2D-Touch sensors.

A Secure Authentication Method for Smart Phone based on User's Behaviour and Habits

  • Lee, Geum-Boon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.65-71
    • /
    • 2017
  • This paper proposes a smart phone authentication method based on user's behavior and habit that is an authentication method against shoulder surfing attack and brute force attack. As smart phones evolve not only storage of personal data but also a key means of financial services, the importance of personal information security in smart phones is growing. When user authentication of smart phone, pattern authentication method is simple to use and memorize, but it is prone to leak and vulnerable to attack. Using the features of the smart phone pattern method of the user, the pressure applied when touching the touch pad with the finger, the size of the area touching the finger, and the time of completing the pattern are used as feature vectors and applied to user authentication security. First, a smart phone user models and stores three parameter values as prototypes for each section of the pattern. Then, when a new authentication request is made, the feature vector of the input pattern is obtained and compared with the stored model to decide whether to approve the access to the smart phone. The experimental results confirm that the proposed technique shows a robust authentication security using subjective data of smart phone user based on habits and behaviors.

Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing (미지 물체의 구속상태에 관한 실시간 추정방법)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

Microfluidic Suction Pump based on Restoring Force of Elastomer for Liquid Transportation in Microfluidic System (미세유체시스템의 유체이송을 위한 탄성체의 복원력을 이용한 흡입형 미세유체펌프)

  • Byun, Kang Il;Han, Eui Don;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.81-86
    • /
    • 2015
  • This paper presents a disposable passive suction pump that uses the restoring force of an elastomeric chamber for liquid transportation in a microfluidic system. The proposed suction pump can be operated by finger pressure without any peripheral equipment. To adjust the generated suction pressure, five different displacements of the suction chamber ceiling, two different chamber shapes, and five different elastic moduli of the elastomer were considered. For a cylindrical chamber with a 5 mm height and 5 mm radius, the generated suction pressure and flow rate increased almost linearly up to about 31 kPa and $160.8{\mu}L/min$, respectively, depending on the chamber deformation. A maximum suction pressure of $42.9{\pm}0.7kPa$ was obtained for a hemispherical chamber with a 2.1 mm height and 5 mm radius.

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}$-BONDING , ${\pi}$-FAR INFRARED RAYS AND NEW SPACE ENERGY RESOURCE

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.73-87
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remining valence electrons of any molecular atoms make three dimensional crystallizing $\pi$-bondings. The electrons on the $\pi$-bonding orbital rotate clockwise or counter-clockwise and they then make electro-magnetic waves between atoms on the orbital because electron move between plus charged ions. The three dimensional crystallizing $\pi$-bonding orbitals are quantum-mechanically modeled by a cyclic Kronig-Penny Model and energy band structures are analyzed with their potential barrier thickness. The waves generated between plus charged ions are the particular $\pi$-far infrared rays, which have dual properties between material and electro-magnetic waves and can be measured not by modern electro-magnetic tester but biosensor such as finger's force tester. Because the $\pi$-rays can be modulated with electro-magnetic waves it can be applied for harmful electro-magnetic wave killers. Because the $\pi$-rays make new three dimensional crystallizing $\pi$-bonding orbitals in the material the food and drink can be transformed into a helpful physical constitutional property for human health. Distinction between crystalline and amorphous metals is possible because very strong crystalline $\pi$-bonding orbitals can not easily be transformed into another. The $\pi$-rays can also be applied for biofunctional diagnostics and therapy. Gravitational field is one of the electro-magnetic fields. And also magnetic field and gravitational force field make charge's movement. ($\times$ = q, : magnetic field, : force field, q: plus charge, : velocity field)

  • PDF