• Title/Summary/Keyword: fine silica

Search Result 257, Processing Time 0.028 seconds

Open Tubular Molecular Imprinted Polymer Fabricated in Silica Capillary for the Chiral Recognition of Neutral Enantiomers in Capillary Electrochromatography

  • Yang, Song-Hee;Zaidi, Shabi Abbas;Cheong, Won-Jo;ALOthman, Zeid A.;ALMajid, Abdullah M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1664-1668
    • /
    • 2012
  • In this study, we have expanded the applicability of the pre-established generalized preparation protocol to MIPs with a neutral template. The ($4S,5R$hyl-5-phenyl-2-oxazolidinone MIP layer was formed inside a pretreated and silanized fused silica capillary, and its chiral separation performance was examined. Optimization of chiral separation was also carried out. This is the very first report of somewhat successful application of the generalized preparation protocol to a MIP with a genuine neutral template.

Fuctionalization of SBA-16 Mesoporous Materials with Cobalt(III) Cage Amine Complex

  • Han, Sang-Cheol;Sujandi, Sujandi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1381-1384
    • /
    • 2005
  • Surface modification of tridimensional cubic mesoporous silica, SBA-16, was investigated with pendant arm functionalized cobalt diaminosarcophagine (diAMsar) cage complex which covalently grafted onto the silica surface through the silication with sylanol group. The spectroscopic results showed that the mesoporous structure was preserved under the $[Co(diAMsar)]^{3+}$ grafting reaction condition. Successful grafting prevented the cobalt diAMsar cage from leaching out from the SBA-16 support.

ASR Resistance of Ternary Blended Binder Adding Ultra Fine Mineral Admixture (고분말도 광물성 혼화재를 혼입한 삼성분계 결합재의 ASR 저항성 평가)

  • Jeon, Sung Il;Ahn, Sang Hyeok;An, Ji Hwan;Yun, Kyung Ku;Nam, Jeong-Hee
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-89
    • /
    • 2013
  • PURPOSES : This study is to evaluate ASR(alkali silica reactivity) resistance of ternary blended binder adding ultra fine mineral admixture. METHODS : This study analyzes ASR expansion using ASTM C 1260 and 1567. RESULTS : This study showed that the fineness of mineral admixture had no effect on ASR expansion. The expansion of ternary blended binder(UFFA 20%+FGGBS 10%) were below 0.1%, and this binder met the ASR standard. Also when adding the CSA expansion agent, ASR expansion slightly decreased. The expansion of latex modified mixture increased by 80% comparing plain mixture. CONCLUSIONS : Ternary blended binder met the ASR standard, and this binder is available in concrete bridge deck overlay.

Mechanical Properties and ASR Behavior of Recycled Glass Fine Aggregate Mortar Mixed with Mineral Admixture (혼화재를 혼입한 순환유리잔골재 모르타르의 역학적 특성과 ASR 거동)

  • Eu, Ha-Min;Kim, Guy-Yong;Park, Jun-Young;Sasui, Sasui;Choi, Byung-Cheol;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.195-196
    • /
    • 2023
  • In this study, the mechanical properties, alkali-silica reaction(ASR) expansion and residual mechanical properties after ASR of waste glass fine aggregate(GS) mortar according to mineral mixture were evaluated. As a result, it was found that the mineral mixture reduces the ASR expansion. However, mechanical properties and residual mechanical properties have decreased.

  • PDF

Durability of High Performance Polymer Concrete Composites (Focusing on Chemical Resistance and Hot Water Resistance) (고성능 폴리머 콘크리트 복합재료의 내구성(내약품성 및 내열성을 중심으로))

  • Hwang, Eui-Hwan;Kim, Yong-Yeon;Song, Min-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.360-368
    • /
    • 2017
  • In order to investigate the durability of high performance polymer concrete composites, polymer concrete specimens were prepared using the ortho-type unsaturated polyester resin (UPR) and iso-type UPR as a polymer binder and the calcium carbonate and silica fine powder as a filler. The durability of polymer concrete specimens was measured by hot water resistance, chemical resistance, pore analysis and SEM observation. The compressive strength of the specimen using the iso-type UPR was higher than that of using the ortho-type UPR, and the compressive strength of the specimen using the silica fine powder was higher than that of using the calcium carbonate filler. From hot water resistance results, it was found that the specimen using the iso-type UPR was superior to that of using the ortho-type UPR and the specimen using the calcium carbonate filler was superior to that of using the silica fine powder. The compressive strength reduction rate was measured after the chemical resistance test and the sodium hydroxide solution showed the highest reduction rate, followed by sulfuric acid, hydrochloric acid and calcium chloride solutions. When using the alkaline solution of sodium hydroxide, the weight reduction rate of the specimen using calcium carbonate was lower than that of using silica fine powder, while for the acidic solutions of sulfuric acid and hydrochloric acid, the weight reduction rate of the specimen using the silica fine powder was lower than that of using calcium carbonate.

The use of river sand for fine aggregate in UHPC and the effect of its particle size

  • Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.431-441
    • /
    • 2020
  • For the purpose of improving the properties of UHPC as well as the economic efficiency in production of the material, Availability of river sands as fine aggregate instead of micro silica sand were investigated. Four different sizes of river sands were considered. Using river sand instead of micro silica sand increased the flowability, and decreased the yield stress and plastic viscosity in rheological properties, and the effect was higher with larger particle size of river sand. It was demonstrated by analyses based on the packing density. In the results of compressive strength and elastic modulus, even though river sand was not as good as micro silica sand, it could provide high strength of over 170 MPa and elastic modulus greater than 40 GPa. The difference in compressive strength depending on the size of river sand was explained with the concept of maximum paste thickness based on the packing density of aggregate. The flexural performance with river sand also presented relatively lower resistance than micro silica sand, and the reduction was greater with larger particle size of river sand. The flexural performance was proven to be also influenced by the difference in the fiber orientation distribution due to the size of river sand.

Evaluation of micro-channel characteristics of fused silica glass using powder blasting (Powder blasting을 이용한 Fused silica glass의 마이크로 채널 가공 및 특성 평가에 관한 연구)

  • Lee, Jung-Won;Kim, Tae-Min;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Recently, due to the development of MEMS technology, researches for the production of effective micro structures and shapes have been actively conducted. However, the process technology based on chemical etching has a number of problems such as environmental pollution and time problems due to multi-process. Various processes to cope with this process are being studied, and one of the mechanical etching processes is the powder blasting process. This process is a method of spraying fine particles, which has the advantage of being an effective process in manufacturing hard brittle materials. However, it is also a process that adversely affects the material surface roughness and material properties due to the impact of the injection of fine particles. In this study, after fabricating micro-channels in fused silica glass with excellent optical properties among the hard brittle materials, we used the nano indentation system to analyze the micro parts using nano-particles as well as machinability and surface roughness analysis of the processed surface. The analysis was performed for the effective processing of powder blasting.

Improvement of precision of three-dimensional ceramic microstructures employing silica nanoparticle-mixed precursor (나노 실리카분말의 충진효과를 이용한 극미세 3차원 세라믹 구조물 정밀화)

  • Lim T.W.;Park S.H.;Yang D.Y.;Pham Tuan Anh;Kim D.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-158
    • /
    • 2006
  • A novel nanofabrication process has been developed using two-photon crosslinking (TPC) for the fabrication of three-dimensional (3D) SiCN ceramic microstructures applicable to high functional 3D devices, which can be used in harsh working environments requiring a high temperature, a resistance to chemical corrosion, as well as tribological properties. After sequential processes: TPC and pyrolysis, 3D ceramic microstructures are obtained. However, large shrinkage due to low-ceramic yield during the pyrolysis is a serious problem to be solved in the precise fabrication of 3D ceramic microstructures. In this work, silica nanoparticles were employed as a filler to reduce the amount of shrinkage. In particular, the ceramic microstructures containing 40 wt% silica nanoparticles exhibited relatively isotropic shrinkage owing to its sliding free from the substrate during pyrolysis.

  • PDF

Pathological Study on the Pulmonary Toxicity of Particulate Matters (Carbon Black, Colloidal Silica, Yellow Sands) in Mice

  • Shimada, Akinori
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2005.05a
    • /
    • pp.51-82
    • /
    • 2005
  • To compare the pulmonary toxicity between ultrafine colloidal silica particles (UFCSs) and fine colloidal silica particles (FCSs), mice were intratracheally instilled with 3 mg of 14-nm UFCSs and 230-nm FCSs and pathologically examined from 30 mill to 24 hr post-exposure. Histopathologically, lungs exposed to both sizes of particles showed bronchiolar degeneration and necrosis, neutrophilic inflammation in alveoli with alveolar type II cell proliferation and particle-laden alveolar macrophage accumulation. UFCSs, however, induced extensive alveolar hemorrhage compared to FCSs from 30 min onwards. UFCSs also caused more severe bronchiolar epithelial cell necrosis and neutrophil influx in alveoli than FCSs at 12 and 24 hr post-exposure. Laminin positive immunolabellings in basement membranes of bronchioles and alveoli of UFCSs treated animals was weaker than those of FCSs treated animals in all observation times. Electron microscopy demonstrated UFCSs and FCSs on bronchiolar and alveolar wall surface as well as in the cytoplasm of alveolar epithelial cells, alveolar macrophages and neutrophils. Type I alveolar epithelial cell erosion with basement membrane damage in UFCSs treated animals was more severe than those in FCSs treated animals. At 12 and 24 hr post-exposure, bronchiolar epithelia cells in UFCSs treated animals showed more intense vacuolation and necrosis compared to FCSs treated animals. These findings suggest that UFCSs has greater ability to induce lung inflammation and tissue damages than FCSs.

  • PDF

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF