• Title/Summary/Keyword: fine resolution patterning

Search Result 18, Processing Time 0.027 seconds

2.22-inch qVGA a-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, Jae-Bok;Park, Sun;Heo, Seong-Kweon;You, Chun-Ki;Min, Hoon-Kee;Kim, Chi-Woo
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (a-Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated as the 2.5 um fine pattern formation technique is integrated with high thermal photo-resist (PR) development. In addition, a novel concept of unique a-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um fine-patterning is a considerably significant technology to obtain higher aperture ratio for higher resolution a-Si TFT-LCD panel realization.

High resolution patterning of polyfluorene derivative containing photo cross-linkable oxetane units

  • Park, Moo-Jin;Lee, Jeong-Ik;Chu, Hye-Yong;Kim, Seong-Hyun;Zyung, Taeh-Young;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1419-1420
    • /
    • 2005
  • We have synthesized a photo patternable blue lightemitting polyfluorene (PF) derivative containing cross-linkable oxetane units. Poly(9,9-bis-(4-octyloxyphenyl)- fluorene-2,7-diyl-alt-9,9-bis-((3-hexyloxy-3'- ethyl)-oxetane)-fluorene-2,7-diyl) has been synthesized by Suzuki coupling polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope UV/visible spectroscopy, photoluminescence and scanning electron microscope (SEM). We obtained fine patterns with 10 mm resolution using the polymer film after exposure and development. This patterning method using conjugated polymers can be applicable to make fine pixels for PLEDs and OFETs.

  • PDF

Fine resolution patterning aided by inkjet printing (미세패턴 구현을 위한 잉크젯 응용 기술)

  • Shin D.Y.;Kim D.S.;Ham Y.B.;Choi B.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.587-588
    • /
    • 2006
  • Drop-on-Demand (DOD) inkjet printing technology, especially piezo-typed, has been paid attention by industries due to its inherent nature of unbeatable material usage and low cost manufacturing cost. Despite of these key advantages over any other competing manufacturing technologies, the primary disadvantage has been considered as its limited capability to produce fine resolution patterns with a commercially available DOD inkjet print head. Although the main effort has been focused on the production of a DOD inkjet print head with smaller nozzles to overcome this challenging issue, an alternative approach could be taken and it would enable to expand the employment of DOD inkjet printing technology to applications requiring fine patterns further more.

  • PDF

Nano-Sized Phosphor by Reverse Emulsion Process and Precision Nozzle Phosphor Patterning

  • Park, Lee-Soon;Yoon, Hae-Sang;Han, Yoon-Soo;Im, Moo-Sik;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.536-539
    • /
    • 2004
  • A novel ink-jet printing method was investigated for fine patterning of phosphor layer in PDP using a precision nozzle printing. A reverse emulsion method was developed for the synthesis of nano-sized phosphor powder that could be formulated in the phosphor ink. The composition of the phosphor ink including charge controlling agents, solvent, dispersant and nano-sized phosphor powder was optimized for the fine patterning of phosphor layer for high resolution PDP.

  • PDF

Photo-imageable Thick-Film Lithography Technology for Embedded Passives Fabrication (내장형 수동소자의 제조를 위한 포토 이미징 후막리소그라피 기술)

  • Lim, Jong-Woo;Kim, Hyo-Tea;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.303-303
    • /
    • 2007
  • Photo-imageable thick-film lithography technology was developed for the fabrication of embedded passives such as inductors and capacitors. In this study, photo-imageable dielectric and conductor pastes have apoted a negative type. Sodalime glass wafer, alumina substrate and zero-shrinkage LTCC green tapes were used as substrates. In result, The lithographic patterns were designed as lines and spaces for conductor material, or via-holes for ceramic, LTCC, materials. The scattering and reflection of UV-beam on the substrate had negative effects on fine patterning. The patterning performance was varied with the exposing and developing process conditions, and also varied with the substrate materials. Fine resolution of less then $50/50{\mu}m$ in line and space was obtained, which is difficult in screen printing method.

  • PDF

2.22-inch qVGA ${\alpha}$-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, J.B.;Park, S.;Heo, S.K.;You, C.K.;Min, H.K.;Kim, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1649-1652
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (${\alpha}$- Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated because the 2.5 um fine pattern formation technique is combined with high thermal photo-resist (PR) development. In addition, a novel concept of unique ${\alpha}$-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um finepatterning is a considerably significant technology to obtain higher aperture ratio for higher resolution ${\alpha}$-Si TFT-LCD panel realization.

  • PDF

Barrier Rib Patterning Technology for Cost Effective High Resolution PDP

  • Park, Lee-Soon;Paek, Sin-Hye;Yun, Sang-Won;Choi, Hyung-Suk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.989-993
    • /
    • 2002
  • Barrier ribs in the color plasma display panel(PDP) function to maintain the discharge space between to glass plates as well as to prevent optical crosstalk. Patterning of barrier ribs is one of unique processes for making PDP. In this work photosensitive barrier rib pastes were prepared by incorporating binder polymer, solvent, functional monomers photoinitiator, mid barrier rib powder. Study on the function of materials for the barrier rib paste were undertaken. After optimization of paste formulation, both photolithographic and transparent soft molding method resulted in fine pattern of barrier ribs with high aspect ratio.

  • PDF

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning (초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템)

  • Roh, Hyeong-Rae;Go, Jung-Kook;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.873-877
    • /
    • 2013
  • The application of inkjet technology has been broadening from home printers to manufacturing tools. Recently, there have been demands for high-resolution printing, especially in the field of printed electronics applications. To improve upon the conventional inkjet printing patterning method, electrohydrodynamic (EHD) inkjet technology has recently attracted attention because droplets smaller than the nozzle diameter can be ejected and materials with wider viscosity range can be used for jetting. In this study, an EHD jet printing system for fine patterning is presented. To print various patterns based on drop on demand printing, vector and raster printing algorithm are implanted in the printing software. Fine conductive patterns with line width of less than $7{\mu}m$ can be easily achieved via EHD jet using a nozzle with inner diameter of $8{\mu}m$.