• 제목/요약/키워드: fine particle shape

검색결과 116건 처리시간 0.022초

부순모래의 입형 및 미립분 함유량 개선을 위한 기술 검토 (An Investigation for Improvement of Grain Shape and Very Fine Sand of Crushed Sand)

  • 김기훈;윤섭;이용성;윤기원;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술.기술논문발표회
    • /
    • pp.71-74
    • /
    • 2004
  • Recently, with the wide shortage of natural sand resources, it has been increasingly used the crushed sand. rushed sand is made by the process of crushing the rocks artificially, which has different particle properties compared with that of natural sand. Because such different panicle properties of crushed sand results in an undesirable effects of concrete. improvement technology for crushed sand particle properties like grain shape and fine particle needed during the manufacturing process. In this paper, improvement technology of grain shape and fine particle is reported. According to test results, adequate investment for manufacturing facilities like impact crusher and abrasion test machine is required to meet the advanced grain shape and grading of crushed sand. Based on the investigation of test result, mixing of natural land and crushed sand with given proportion can achieve the improvement of grain shape. For improving excessive fine panicle contents. current manufacturing system also can enhance the existing technology for fine particle without additional investment. It can be concluded that adequate investment and research can improve the quality of crushed sand.

  • PDF

미세입자 분사가공 시 분사높이 변화에 따른 육각형 가공형상 특성 (Hexagonal Shape Characteristics according to the Change in Standoff Distance during Fine Particle Blasting)

  • 이형태;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.76-83
    • /
    • 2021
  • This study examines the characteristics of spraying conditions based on the change in standoff distance during fine particle spraying while measuring the surface roughness, maximum depth, and maximum width of the sprayed surface. The processing shape of the sprayed surface is analyzed to understand the effects of injection pressure, nozzle diameter, standoff distance, processing shape, processing cycle, processing speed, and injection particles, which are the main factors of fine particle injection processing. Based on the derived characteristics, we attempt to determine the interrelationships of these major factors. The standoff distance is set as a variable factor and a spray machining experiment using a hexagonal shape (from among polygons) instead of square and circular shapes is conducted. Results reveal that research on the characteristics of spraying conditions could be expanded based on changes in the shapes of workpieces.

부순모래를 사용한 콘크리트의 현장 품질 특성에 관한 실험 연구 (Investigation on Properties of Concrete with Crushed Sand on Site)

  • 이성복;이도헌;지남용
    • 한국건축시공학회지
    • /
    • 제3권3호
    • /
    • pp.107-112
    • /
    • 2003
  • This study is to investigate the properties of concrete with crushed sand on site and to propose a quality guideline for its use as artificial sand and concrete. From our experimental result in laboratory and site, we found that demand water of concrete with crushed sand for target slump increased by 18kg/m3 compared to mixed sand and l8kg/m3 compared to sea sand respectively. The compressive strength increased by around 3∼6% when compared to concrete with sea sand. Accordingly, our study showed that the combined sand mixed with sea sand would be desirable to obtain workability and strength of concrete including dry shrinkage and bleeding test. Furthermore, the optimal replacement percentage of crushed sand was 50% with sea sand. As such, crushed sand would be sufficient as fine aggregate for concrete in terms of economic efficiency and quality. Crushed sand, on the other hand can only be used as fine aggregate when VFS(Very Fine Sand) is below 3.5 percentage of weight of sand and particle shape is above 55 percentage. Also, the particle shape and microsand passing NO.200 sieve should continually be improved to increase workability of concrete on site.

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

미세액적에 의한 미세먼지 포집 가시화 연구 (A Study on Visualization of Fine Dust Captured by FOG Droplet)

  • 오진호;김현동;이정언;양준환;김경천
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.39-45
    • /
    • 2021
  • An experiment to visualize fine dust captured by FOG droplet is conducted. Coal dust with 23.56 MMD (Mean Median Diameter) and water with 17.02 MMD is used as fine dust and FOG droplet. Long distance microscope and high-speed camera are used to capture the images of micro-scale particles sprinkled by acrylic duct. After measuring and comparing the size of the coal dust and FOG droplet to MMD, process to seize the coal dust with FOG droplet is recorded in 2 conditions: Fixed and Floated coal dust in the floated FOG droplet flow. In both conditions, a coal dust particle is collided and captured by a FOG droplet particle. A FOG droplet particle attached at the surface of the coal dust particle does not break and remains spherical shape due to surface tension. Combined particles are rotated by momentum of the particle and fallen.

잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향 (Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar)

  • 김성환;배장춘;송승헌;차천수;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건 (Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing)

  • 이형태;황철웅;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.

미세 Si 입자를 고려한 Al-1%Si 본딩 와이어의 신선공정해석 (FE-simulation of Drawing Process for Al-1%Si Bonding Wire Considering Fine Si Particle)

  • 고대철;황원호;이상곤;김병민
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.421-427
    • /
    • 2006
  • Drawing process of Al-1%Si bonding wire considering fine Si particle is analyzed in this study using FE-simulation. Al-1%Si boding wire requires electric conductivity because Al-1%Si bonding wire is used for interconnection in semiconductor device. About 1% of Si is added to Al wire for dispersion-strengthening. Distribution and shape of fine Si particle have strongly influence on the wire drawing process. In this study, therefore, the finite-element model based on the observation of wire by continuous casting is used to analyze the effect of various parameters, such as the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle on wire drawing processes. The effect of each parameter on the wire drawing process is investigated from the aspect of ductility and defects of wire. From the results of the analysis, it is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-1 %Si wire.

미세입자 분사가공 시 표면 조건 변화에 따른 가공 표면 형상 분석 (Analysis of Machined Surface Morphology According to Changes of Surface Condition in Micro Particle Blasting)

  • 최성윤;황철웅;권대규
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.70-75
    • /
    • 2018
  • This study analyzes the change of Al 6061-T6 specimen surface shape when undergoing microparticle spraying and analyzes the influence of factors on the experiment. Fine particle spraying is applied to the specimen and the surface shape of the processed surface is measured through a surface shape measuring device. The measured data was analyzed by the ANOVA method to investigate the effect of factors such as particle, nozzle diameter, pressure, injection height, and injection time on the injection depth and injection diameter.

잔골재의 종류가 콘크리트의 기초적 특성에 미치는 영향 (Influence of Kind of Fine Aggregate on Fundamental Properties of Concrete)

  • 허영선;한창평;한민철;권오현;최영화;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.153-156
    • /
    • 2006
  • This study investigated influence of kind of fine aggregate on fundamental properties of concrete. For the properties of fluidity with various type of fine aggregate, lime stone crushed fine aggregate(Ls) exhibited favorable result, due to grain shape and particle distribution, and next was granite crushed fine aggregate(Gs), natural fine aggregate(Ns). Ns had the highest value of air content while Ls had the lowest, due to the effective filling performance by continuos particle distribution. Ls, Ns, Gs in an order had higher bleeding capacity and faster setting time. However, compressive and tensile strength value exhibited similar tendency, regardless of aggregate type.

  • PDF