• 제목/요약/키워드: fine displacement

검색결과 106건 처리시간 0.028초

미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템 (A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts)

  • 최기봉;이재종;김기홍;고국원
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.

Application on the New Technology of Construction Structures Disaster Protection Management based on Spatial Information

  • Yeon, Sangho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권3호
    • /
    • pp.136-145
    • /
    • 2018
  • The disaster monitoring technique by combination of the measurement method and the fine precision of the sensor collecting the satellite-based information that can determine the displacement space is available in a variety of diagnostic information and the GIS/GNSS by first sensor it is being requested from them. Be large and that the facility is operated nationally distributed torsional displacement of the terrain and facilities caused by such natural disasters progress of various environmental factors and the surroundings. To diagnose this spatial information, which contains the various sensors and instruments tracks the precise fine displacement of the main construction structures and the first reference in the Geospatial or more three-dimensional detailed available map and location information using the installed or the like bridges and tunnels produced to a USN/IoT change at any time, by combining the various positioning analysis of mm-class for the facility main area observed is required to constantly in the real time information of the USN/IoT environment sensor, and to utilize this as a precise fine positioning information by UAV/Drone to the precise fine displacement of the semi-permanent infrastructures. It managed to be efficient management by use of new technologies, analyzing the results presented to a method capable of real-time monitoring for a large structure or facility to construction disaster prevention.

Integration Technique of Smart Infra Management for Smart City Construction

  • Yeon, Sangho;Yeon, Chunhum
    • International Journal of Contents
    • /
    • 제15권2호
    • /
    • pp.75-78
    • /
    • 2019
  • The Integration technique of combining the measurement method with the fine precision of the sensor collecting the satellite-based information to determine the displacement space is available to a variety of diagnostic information. The measurement method by a GNSS with the sensors is needed since there will always be occasional occurrence of natural disasters caused by various environmental factors and the surroundings. Such attempts carried out nationally by distributed torsional displacement of the terrain and facilities. The combination of the various positioning analysis of mm-class for the facility of main area observed is required constantly in real time information of the USN/IoT Smart sensors and should be able to utilize such information as a precisely fine positioning information for the precisely fine displacement of the semi-permanent main facilities. In this study, for the installation of the receiving system, the USN/IoT base line positioning are easily accessible for the target bridges. Transmitting hourly from the received data is also executed in real time using the wireless Wi-Fi/Bluetooth bridges and related facilities to automatically process a fine position displacement. The results obtained from this method can be analyzed by real-time monitoring for a large structure or facilities for disaster prevention.

푸리에 변환 간섭 해석법을 이용한 구면의 미세 변위 측정 (Profiling of fine displacement of spherical surface using Fourier transform method)

  • 손영준;주신호;권진혁;최옥식
    • 한국광학회지
    • /
    • 제8권3호
    • /
    • pp.199-203
    • /
    • 1997
  • 안구표면과 같은 미세구면의 변위를 알아내기 위하여 Twyman-Green 간섭계를 이용하였으며 반송무늬(carrier fringe)를 형성시켜 푸리에 변환법으로 미세구면의 변위분포를 측정하였다. 기준위치에서 일정한 반송무늬가 형성되도록 한 후 구면이 변화할 때 반송무늬의 변화방향을 관측하였으며, 반송무늬의 변화방향에 의해 구면의 변화방향을 알아내었다. 푸리에 변환법(Fourier transform method)을 이용하여 CCD카메라에서 받아들여진 한 장의 간섭무늬로부터 위상분포를 얻어내고 구면의 변위 분포를 계산하였다. 공간주파수 영역에서 변위에 대한 정보를 분리함으로써 간섭무늬의 배경분포 및 잡음을 제거하였으며, 구면의 변위에 대한 3차원 분포를 이론적인 계산값의 측정오차가 .lambda./10 이내에서 얻어내었다.

  • PDF

삼면반사체를 이용한 6자유도 미소 변위 측정 (Measurement of Fine 6-DOF Displacement using a 3-facet Mirror)

  • 박원식;조형석;변용규;박노열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.50-50
    • /
    • 2000
  • In this paper, a new measuring system is :proposed which can measure the fine 6-DOF displacement of rigid bodies. Its measurement principle is based on detection of laser beam reflected from a specially fabricated mirror that looks like a triangular pyramid having an equilateral cross-sectional shape. The mirror has three lateral reflective surfaces inclined 45$^{\circ}$ to its bottom surface. We call this mirror 3-facet mirror. The 3-facet mirror is mounted on the object whose 6-DOF displacement is to be measured. The measurement is operated by a laser-based optical system composed of a 3-facet mirror, a laser source, three position-sensitive detectors(PSD). In the sensor system, three PSDs are located at three corner points of a triangular formation, which is an equilateral triangular formation tying parallel to the reference plane. The sensitive areas of three PSDs are oriented toward the center point of the triangular formation. The object whose 6-DOF displacement is to be measured is situated at the center with the 3-facet mirror on its top surface. A laser beam is emitted from the laser source located at the upright position and vertically incident on the top of the 3-fatcet mirror. Since each reflective facet faces toward each PSD, the laser beam is reflected at the 3-facet mirror and splits into three sub-beams, each of which is reflected from the three facets and finally arrives at three PSDs, respectively. Since each PSD is a 2-dimensional sensor, we can acquire the information on the 6-DOF displacement of the 3-facet mirror. From this principle, we can get 6-DOF displacement of any object simply by mounting the 3-facet mirror on the object. In this paper, we model the relationship between the 6-DOF displacement of the object and the outputs of three PSDs. And, a series of simulations are performed to demonstrate the effectiveness of the proposed method. The simulation results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects.

  • PDF

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges

  • Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.393-407
    • /
    • 2023
  • To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF

Opto-mechanical Design of Monocrystalline Silicon Mirror for a Reflective Imaging Optical System

  • Liu, Xiaofeng;Zhang, Xin;Tian, Fuxiang
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.236-243
    • /
    • 2022
  • Monocrystalline silicon has excellent properties, but it is difficult to design and manufacture silicon-based mirrors that can meet engineering applications because of its hard and brittle properties. This paper used monocrystalline silicon as the main mirror material in an imaging system to carry out a feasibility study. The lightweight design of the mirror is completed by the method of center support and edge cutting. The support structure of the mirror was designed to meet the conditions of wide temperature applications. Isight software was used to optimize the feasibility sample, and the optimized results are that the root mean square error of the mirror surface is 3.6 nm, the rigid body displacement of the mirror is 2.1 ㎛, and the angular displacement is 2.5" under the conditions of a temperature of ∆20 ℃ and a gravity load of 1 g. The optimized result show that the silicon-based mirror developed in this paper can meet the requirements of engineering applications. This research on silicon-based mirrors can provide guidance for the application of other silicon-based mirrors.