• Title/Summary/Keyword: fin volume

Search Result 69, Processing Time 0.018 seconds

Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume) (내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준))

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

Optimization of an Annular Fin with a Pipe of Variable Inner Radius for Fixed Fin Volume (고정된 휜 체적에 기준한 원관 내부반경이 변하는 환형 휜의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Optimum values of fin performance and dimensions for an annular fin with a rectangular profile and a pipe with variable inner radius are determined by using a variable separation method. The range of ambient convection characteristic number that results in optimum heat loss is listed. The optimum heat loss, corresponding optimum fin effectiveness, fin length, and fin height are presented as a function of the inner radius of the pipe, inner fluid convection characteristic number, fin volume, and ambient convection characteristic number. One of the results shows that the optimum heat loss, fin effectiveness and fin length increase linearly with the inner radius of the pipe when both the fin volume and fin-base radius are fixed.

Optimization of Convective Trapezoidal Profile Fin having Fluid inside the Wall (내벽에 유체가 있는 대류 사다리꼴 형상 Fin의 최적화)

  • Jeong Byung-Cheol;Lee Sung-Joo;Yoon Sea-Chang;Kang Hyung Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-102
    • /
    • 2006
  • This study analyzes and optimizes a design for a trapezoidal profile straight fin using one-dimensional analytical method. The heat transfer, fin length and fin height are optimized as a function of fin volume, fin shape factor and fin base length. In this optimization, convection characteristic number over fin surface and that of fluid inside fin wall are considered. One of the results shows that the maximum heat loss increases as fin volume increases and both fin shape factor and fin base length decrease.

The Effect of a Wing on the Heat toss from a Modified Rectangular Fin

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.192-200
    • /
    • 2002
  • A modified asymmetric rectangular fin is analysed using the two-dimensional separation of variables method. This modified rectangular fin is made by attaching the wing on the top side of a rectangular fin. Heat loss from each side of this modified rectangular fin is calculated. The relative increasing ratio of heat loss between a modified rectangular fin and a rectangular fin is presented as a function of dimensionless fin volume, wing height and the location of the wing. Especially, to show the remarkable effect of the wing on the heat loss, the relative increasing ratios of heat loss between two different volume increasing methods are listed.

Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화)

  • Kang Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

Effects of Rapid Thermal Annealing Temperature on Performances of Nanoscale FinFETs

  • Sengupta, M.;Chattopadhyay, S.;Maiti, C.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.4
    • /
    • pp.266-272
    • /
    • 2009
  • In the present work three dimensional process and device simulations were employed to study the performance variations with RTA. It is observed that with the increase in RTA temperature, the arsenic dopants from the source /drain region diffuse laterally under the spacer region and simultaneously acceptors (Boron) are redistributed from the central axis region of the fin towards the Si/SiO2 interface. As a consequence both drive current and peak cut-off frequency of an n-FinFET are observed to improve with RTA temperatures. Volume inversion and hence the flow of carries through the central axis region of the fin due to reduced scattering was found behind the performance improvements with increasing RTA temperature.

Numerical prediction of hydrogen storaging performance of finned metal hybride beds (휜이 달린 수소저항합금 베드의 수소저장 성능의 수치적 예측)

  • Kim, Myeong-Chan;Lee, Sang-Yong;Gu, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.520-529
    • /
    • 1998
  • Heat and mass transfer behaviors of metal hydride beds were predicted by solving a set of volume-averaged equations numerically both for the gas (hydrogen) and the solid(metal hydride) phases. Time variations of temperature and hydrogen concentration ratio distributions were obtained for internally cooled, cylindrical-shaped beds with metal(aluminum) fins imbedded in them. Also, time variations of the space-averaged hydrogen concentration ratio were obtained. Temperature and velocity of the coolant, hydrogen pressure at the gas inlet, and the fin spacing were taken as the parameters. The hydrogen absorption rate increases with the higher velocity and the lower temperature of the coolant, and with the decrease of the fin spacing. Increasing of the hydrogen pressure at the gas inlet also promotes the rate of absorption though the increasing rate gradually slows down. The amount of the hydrogen storage per unit volume of the bed decreases with the tighter fin spacing despite of the higher absorption rate ; therefore, there should be an optimum fin spacing for a given volume of the system and the amount of the hydrogen storage, in which the absorption rate is the highest.

Optimum Design of a Reversed Trapezoidal Fin with Variable Fin Base Thickness (핀 바닥 두께가 변화하는 역 사다리꼴 핀의 최적 설계)

  • Kang, Hyung-Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.455-461
    • /
    • 2008
  • A reversed trapezoidal fin with variable fin base thickness is optimized using a two-dimensional analytical method. For the fin base boundary condition, instead of a constant temperature, heat transfer from the inside fluid to the fin base is considered. Heat loss from the fin tip is not ignored. The maximum heat loss, corresponding optimum fin effectiveness, fin length and base height are presented as a function of the fin base thickness, shape factor and volume.

OPTIMUM PERFORMANCE AND DESIGN OF A RECTANGULAR FIN

  • Kang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.705-711
    • /
    • 2007
  • A rectangular fin with a fluid in the inside wall is analyzed and optimized using a two-dimensional analytical method. The influence of the fluid convection characteristic number in the inside wall and the fin base thickness on the fin base temperature is listed. For the fixed fin volumes, the maximum heat loss and the corresponding optimum fin effectiveness and dimensions as a function of the fin base thickness, convection characteristic numbers ratio, convection characteristic number over the fin, fluid convection characteristic number in the inside wall, and the fin volume are represented. One of the results shows that both the optimum heat loss and the corresponding fin effectiveness increase as the fin base thickness decreases.