• Title/Summary/Keyword: film dosimetry

Search Result 162, Processing Time 0.028 seconds

A Study on Electron Beam Dosimetry for Chest Wall Irradiation (흉곽(胸廓)의 전자선(電子線) 조사시(照射時) 선량분포(線量分布)에 관(關)한 연구(硏究))

  • Kang, Wee Saing;Koh, Kyoung Hwan;Ha, Sung Whan;Park, Charn Il
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 1983
  • To obtain 7 MeV electron beam which is suitable for treatment of the chest wall after radical of modified radical mastectomy, the authors reduced the energy of electron beam by means by Lucite plate inserted in the beam. To determine the proper thickness of the Lucite plate necessary to reduce the energy of 9 MeV electron beam to 6 MeV, dosimetry was made by using a parallel plate ionization chamber in polystyrene phantom. Separation between two adjacent fields, 7 MeV for chest wall and 12 MeV for internal mammary region, was studied by means of film dosimetry in both polytyrene phantom and Humanoid phantom. The results were as follows. 1. The average energy of 9 MeV electron beam transmitted through the Lucite plate was reduced. Reduction was proportional to the thickness of the Lucite plate in the rate of 1.7 MeV/cm. 2. The proper thickness of the Lucite plate necessary to obtain 6 MeV electron beam from 9 MeV was 1.2 cm. 3. 7 MeV electron beam, 80% dose at 2cm depth, is adequate for treatment of the chest wall. 4. Proper separation between two adjacent electron fields, 7 MeV and 12 MeV, was 5mm on both flat surface and sloping surface to produce uniform dose distribution.

  • PDF

Treatment Planning and Dosimetry of Small Radiation Fields for Stereotactic Radiosurgery (Stereotactic Radiosurgery를 위한 소형 조사면의 선량측정)

  • Chu Sung Sil;Suh Chang Ok;Loh John J.K.;Chung Sang Sup
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.101-112
    • /
    • 1989
  • The treatment planning and dosimetry of small fields for stereotactic radiosurgery with 10 MV x-ray isocentrically mounted linear accelerator is presented. Special consideration in this study was given to the variation of absorbed dose with field size, the central axis percent depth doses and the combined moving beam dose distribution. The collimator scatter correction factors of small fields $(1\times1\~3\times3cm^2)$ were measured with ion chamber at a target chamber distance of 300cm where the projected fields were larger than the polystyrene buildup caps and it was calibrated with the tissue equivalent solid state detectors of small size (TLD, PLD, ESR and semiconductors). The central axis percent depth doses for $1\timesl\;and\;3\times3cm^2$ fields could be derived with the same acuracy by interpolating between measured values for larger fields and calculated zero area data, and it was also calibrated with semiconductor detectors. The agreement between experimental and calculated data was found to be under $2\%$ within the fields. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor regions was performed with dose planning computer system (Therac 2300) and was verified with film dosimetry. The more the number of strips and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. The circular cone, we designed, improves the alignment, minimizes the penumbra of the beam and formats ball shape of treatment area without stellate patterns. These dosimetric techniques can provide adequate physics background for stereotactic radiosurgery with small radiation fields and 10MV x-ray beam.

  • PDF

The Dosimetry of Radiosurgery using of Rando Phantom (Rando phantom을 이용한 Radiosurgery에 관한 Dosimetry)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.113-119
    • /
    • 1990
  • The stereotactic radiosurgery using ionizing radiation of high energy is a technique for exadicating intracranial small tumors, which are inaccessible or unsuitable for open surgical technique. For such a small field radiosurgery. TLD or film dosimetry is essential. The three dimensional dose planning of radiosurgery was performed with dose planning computer system (Therac 2300). The target dose distribution and its error according to patient position were discussed. And were measured of circular cone which specially designed in our Hospital. The position error of Rando Phantom compared with CT were O.4mm in the AP-LAT section and in the AP-VERT section, 1.0mm in the AP-VERT $45^{\circ}$section. The ratio of accuracy of the gantry and couch rotation were 1.5mm diamteter for centeral axis of I8MeV linear accelerator. Our study suggested that radiosurgery of small field in our department will be appropriate for clinical application.

  • PDF

GafChromic RTQA Film Dosimetry for Laser Beam with Photodynamic Therapy (GafChromic RTQA Film을 이용한 광역학적 치료용 레이저의 선질 측정)

  • Lee, Byung Koo;Lim, Hyun Soo;Kenar, Necla
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose: The purposes of this study were to measure the dose distribution of Photodynamic therapy(PDT) laser with 635 nm wavelength using GafChromic film. Method & Result: We made each output 300 J by changing mW and sec using the laser beam radiation mode such as C.W(Continuous Wave) mode, Pulse mode and Burst Pulse mode and measured the does at 0 mm and 5 mm of distance from optic fiber catheter end to the film, and at 5 mm distance by changing the angle of the end of the optic fiber catheter as $0^{\circ}$ and $0.5^{\circ}$. The radiated film was scanned and OD(Optical Density) was compared. And two-dimensional isodose curves were obtained and the consistency of shapes was compared. It was confirmed that there was consistency between optic density and the dose radiated on the film when we radiated GafChromic film by changing distance and angle of 300 J output in each radiation mode coordinating mW and sec. Conclusion: In this study, we could identify the stability according to changes in laser beam modes, changes in output according to distance, changes in uniformity according to angle, and beam profiles using GafChromic film, and we could also get two-dimensional isodose curve. It was found that small change in the distance and angle that is made when optic fiber catheter was contacted on the treatment area did not make big effects on the output of beam and the uniformity of dose, and it was also found that GafChromic film could be utilized for the purpose of QA of PDT laser beam.

A Method of Stereotactic Radiosurgery Using A Linear Accelerator (Linear Accelerator를 이용한 Stereotactic Radiosurgery 방법)

  • Na, Soo-Kyung;Park, Jai-Ill
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.6 no.1
    • /
    • pp.146-153
    • /
    • 1994
  • A modified irradiation technique utilizing a linear accelerator for radiation surgery within the brain was performed in 41 cases of patients with anteriovenous malformation(AVM), astrocytoma, meningioma. etc. The treatment planning and dosimetry of small field for stereotactic radiosurgery with 10 MV X-ray isocentically mounted linear accelerator will be presented dose with field size, the central axis persent depth dose and the combined moving beam dose distribution. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor region was perfomed with dose planning computer system(Therac 2300) and was verified with film dosimetry. The more the number of strip and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. In this study, the using machine and method was as fellowing. 1) Apparatus : NELAC-1018 10MV X-ray 2) Strip No. : Select the 5-7 strips 3) Cone and field size are from $1{\times}1cm^2$ to $3.5{\times}3.5cm^2$, and special circular cone designed for the purpose of minimized the risk to normal tissue and those size are $0.7{\~}3.6cm{\phi}$.

  • PDF

FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements

  • Al-Ghamdi, Hanan;Farah, Khaled;Almuqrin, Aljawharah;Hosni, Faouzi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.255-261
    • /
    • 2022
  • A reliable and well-characterized dosimetry system which is traceable to the international measurement system, is the key element to quality assurance in radiation processing with cobalt-60 gamma rays, X-rays, and electron beam. This is specifically the case for health-regulated processes, such as the radiation sterilization of single use medical devices and food irradiation for preservation and disinfestation. Polyethylene is considered to possess a lot of interesting dosimetric characteristics. In this work, a detailed study has been performed to determine the dosimetric characteristics of a commercialized high-density polyethylene (HDPE) film using Fourier transformed infrared spectrometry (FTIR). Correlations have been established between the absorbed dose and radiation induced infrared absorption in polyethylene having a maximum at 965 cm-1 (transvinylene band) and 1716 cm-1 (ketone-carbonyl band). We have found that polyethylene dose-response is linear with dose for both bands up to1000 kGy. For transvinylene band, the dose-response is more sensitive if irradiations are made in helium. While, for ketone-carbonyl band, the dose-response is more sensitive when irradiations are carried out in air. The dose-rate effect has been found to be negligible when polyethylene samples are irradiated with electron beam high dose rates. The irradiated polyethylene is relatively stable for several weeks after irradiation.

Development of a Pelvic Phantom for Dose Verification in High Dose Rate (HDR) Brachytherapy

  • Jang, Ji-Na;Suh, Tae-Suk;Huh, Soon-Nyung;Kim, Hoi-Nam;Yoon, Sei-Chul;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.150-153
    • /
    • 2002
  • High dose rate (HDR) brachytherapy in the treatment of cervix carcinoma has become popular, because it eliminated many of the problems with conventional brachytherapy. In order to improve clinical effectiveness with HDR brachytherapy, dose calculation algorithm, optimization procedures, and image registrations should be verified by comparing the dose distributions from a planning computer and those from a humanoid phantom irradiated. Therefore, the humanoid phantom should be designed such that the dose distributions could be quantitatively evaluated by utilizing the dosimeters with high spatial resolution. Therefore, the small size of thermoluminescent dosimeter (TLD) chips with the dimension of 1/8" and film dosimetry with spatial resolution of <1mm used to measure the radiation dosages in the phantom. The humanoid phantom called a pelvic phantom is made of water and tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators are inserted into the grooves of the applicator supporters. The dose distributions around the applicators, such as Point A and B, can be measured by placing a series of TLD chips (TLD-to- TLD distance: 5mm) in three TLD holders, and placing three verification films in orthogonal planes.

  • PDF

Research of 6MeV electron dose distribution (Electron therapy에서의 dose distribution에 관한 연구)

  • Je Jae Yong;Park Chul Woo;Jin Sung Jin;Park Eun Tae
    • 대한방사선치료학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.27-32
    • /
    • 2005
  • Electron is used for the treatment of skin cancer, breast cancer, and head and neck cancer in clinic. Our study is performed to check the isodose distribut ion in source surface distance(SSD) and source bolus distance(SBD) setup, nipple influence to isodose distribution of electron, junctional area isodose variation of photon and electron field. Dosimetry is carried out with phantom, acryl, and film as the same condition of treatment setup. $8\%$ of isodose difference is noted with the surface distance(SSD) and source bolus distance(SBD) setup. To reduce the influence of nipple. corresponding volume of bolus should be removed. And bolus covering all the electron field reduced hot and cold spot of junctional area of photon.

  • PDF

Validation of Gamma Knife Perfexion Dose Profile Distribution by a Modified Variable Ellipsoid Modeling Technique

  • Hur, Beong Ik;Jin, Seong Jin;Kim, Gyeong Rip;Kwak, Jong Hyeok;Kim, Young Ha;Lee, Sang Weon;Sung, Soon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Objective : High precision and accuracy are expected in gamma knife radiosurgery treatment. Because of the requirement of clinically applying complex radiation and dose gradients together with a rapid radiation decline, a dedicated quality assurance program is required to maintain the radiation dosimetry and geometric accuracy and to reduce all associated risk factors. This study investigates the validity of Leksell Gamma plan (LGP)10.1.1 system of 5th generation Gamma Knife Perfexion as modified variable ellipsoid modeling technique (VEMT) method. Methods : To verify LGP10.1.1 system, we compare the treatment plan program system of the Gamma Knife Perfexion, that is, the LGP, with the calculated value of the proposed modified VEMT program. To verify a modified VEMT method, we compare the distributions of the dose of Gamma Knife Perfexion measured by Gafchromic EBT3 and EBT-XD films. For verification, the center of an 80 mm radius solid water phantom is placed in the center of all sectors positioned at 16 mm, 4 mm and 8 mm; that is, the dose distribution is similar to the method used in the x, y, and z directions by the VEMT. The dose distribution in the axial direction is compared and analyzed based on Full-Width-of-Half-Maximum (FWHM) evaluation. Results : The dose profile distribution was evaluated by FWHM, and it showed an average difference of 0.104 mm for the LGP value and 0.130 mm for the EBT-XD film. Conclusion : The modified VEMT yielded consistent results in the two processes. The use of the modified VEMT as a verification tool can enable the system to stably test and operate the Gamma Knife Perfexion treatment planning system.

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.