DOI QR코드

DOI QR Code

FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements

  • Al-Ghamdi, Hanan (Physics Department, College of Science, Princess Nourah Bint Abdulrahman University) ;
  • Farah, Khaled (Universite de Sousse, Institut Superieur Du Transport et de La Logistique de Sousse) ;
  • Almuqrin, Aljawharah (Physics Department, College of Science, Princess Nourah Bint Abdulrahman University) ;
  • Hosni, Faouzi (Department of Physics, College of Science, University of Bisha)
  • Received : 2020.10.18
  • Accepted : 2021.07.16
  • Published : 2022.01.25

Abstract

A reliable and well-characterized dosimetry system which is traceable to the international measurement system, is the key element to quality assurance in radiation processing with cobalt-60 gamma rays, X-rays, and electron beam. This is specifically the case for health-regulated processes, such as the radiation sterilization of single use medical devices and food irradiation for preservation and disinfestation. Polyethylene is considered to possess a lot of interesting dosimetric characteristics. In this work, a detailed study has been performed to determine the dosimetric characteristics of a commercialized high-density polyethylene (HDPE) film using Fourier transformed infrared spectrometry (FTIR). Correlations have been established between the absorbed dose and radiation induced infrared absorption in polyethylene having a maximum at 965 cm-1 (transvinylene band) and 1716 cm-1 (ketone-carbonyl band). We have found that polyethylene dose-response is linear with dose for both bands up to1000 kGy. For transvinylene band, the dose-response is more sensitive if irradiations are made in helium. While, for ketone-carbonyl band, the dose-response is more sensitive when irradiations are carried out in air. The dose-rate effect has been found to be negligible when polyethylene samples are irradiated with electron beam high dose rates. The irradiated polyethylene is relatively stable for several weeks after irradiation.

Keywords

Acknowledgement

The Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program funded this research.

References

  1. A. Chmielewski, M. Haji-Saeid, Radiation processing technologies: past, present and future, Radiat. Phys. Chem. 71 (2004) 17-24, https://doi.org/10.1016/j.radphyschem.2004.05.040.
  2. K. Makuuchi, S. Cheng, Radiation Processing of Polymer Materials and its Industrial Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012.
  3. B. Whittaker, M.F. Watts, The influence of dose rate, ambient temperature and time on the radiation response of Harwell PMMA dosimeters, Radiat. Phys. Chem. 60 (2001) 101-110, https://doi.org/10.1016/S0969-806X(00)00316-9.
  4. B. Whittaker, A new PMMA dosimeter for low doses and low temperatures, Radiat. Phys. Chem. 35 (1990) 699-702, https://doi.org/10.1016/1359-0197(90)90299-W.
  5. ISO/ASTM, Standard Practice for Use Polymethylmethacrylate Dosimetry System, American Society for Testing and Materials, Philadelphia, PA, 2019. ISO/ASTM Standard 51275.
  6. ISO/ASTM, Standard Practice for Use of Radiochromic Film Dosimetry System, American Society for Testing and Materials, Philadelphia, PA, 2013b. ISO/ASTM Standard 51275.
  7. I. Janovsky, K. Mehta, The effects of humidity on the response of radiochromic film dosimeters FWT-60-00 and gafchromic-DM-1260, Radiat, Phys. Chem. 43 (1994) 407-409, https://doi.org/10.1016/0969-806X(94)90036-1.
  8. W.L. McLaughlin, J.M. Puhl, M. Miller, Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma and electron radiation, Radiat. Phys. Chem. 46 (1995) 1227-1233, https://doi.org/10.1016/0969-806X(95)00359-6.
  9. A.A. Abdel-Fattah, A. Miller, Temperature, humidity and time. Combined effects on radiochromic film dosimeters, Radiat, Phys. Chem. 47 (1996) 611-621, https://doi.org/10.1016/0969-806X(95)00037-X, 1996.
  10. K. Farah, F. Kuntz, O. Kadri, L. Ghedira, Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation, Radiat. Phys. Chem. 71 (2004) 339-343, https://doi.org/10.1016/j.radphyschem.2004.05.041.
  11. K. Farah, F. Hosni, A. Mejri, A.H. Hamzaoui, The effect of time and dose fractionation on the response of Harwell Gammachrome YR PMMA dosimeter, Radiat. Phys. Chem. 98 (2014) 113-117, https://doi.org/10.1016/j.radphyschem.2014.01.023.
  12. F. Hosni, K. Farah, A. Mejri, A. Khayat, R. Chtourou, A.H. Hamzaoui, A study of the fractionation dose on the radiation response of Harwell Red-Perspex PMMA dosimeter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 290 (2012) 69-71, https://doi.org/10.1016/j.nimb.2012.08.022.
  13. IAEA, Dosimetry for food irradiation, International Atomic Energy Agency, Vienna, Austria, 2015. Technical Reports Series No. 409 (ISBN 92-0-115502-6), https://www-pub.iaea.org/MTCD/Publications/PDF/TRS409_scr.pdf.
  14. David J.T. Hill, Andrew K. Whittaker, Radiation Chemistry of Polymers, Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc, 2016. https://10.1002/0471440264.pst488.pub2.
  15. K.A. Murray, J.E. Kennedy, B. McEvoy, O. Vrain, D. Ryan, C.L. Higginbotham, The effects of high energy electron beam irradiation on the thermal and structural properties of low-density polyethylene, Radiat, Phys. Chem. 81 (2012) 962-966. https://doi.org/10.1016/j.radphyschem.2011.09.011
  16. M. Ferry, Y. Ngono-Ravache, C. Aymes-Chodur, M.C. Clochard, X. Coqueret, 25 Cortella, L, E. Pellizzi, S. Rouif, S. Esnouf, Ionizing Radiation Effects in Polymers, Reference Module in Materials Science and Materials Engineering, Elsevier, 2016, https://doi.org/10.1016/B978-0-12-803581-8.02095-6.
  17. J. Silverman, F.J. Zoepfl, J.C. Randall, V. Markovic, The mechanism of radiation-induced linking phenomena in polyethylene, Radiat, Phys. Chem. 22 (1983) 583-585, https://doi.org/10.1016/0146-5724(83)90066-3, 1977.
  18. C.J. Perez, E.M. Valles, M.D. Failla, The effect of post-irradiation annealing on the crosslinking of high-density polyethylene induced by gamma-radiation, Radiat. Phys. Chem. 79 (2010) 710-717, https://doi.org/10.1016/j.radphyschem.2010.01.005.
  19. B.J. Lyons, Radiolytic unsaturation decay in polyethylene. Part I-general review and analysis with additional new work, Radiat. Phys. Chem. 69 (2004) 495-502, https://doi.org/10.1016/j.radphyschem.2003.10.004, 2004.
  20. B.J. Lyons, Radiolytic unsaturation decay in polyethylene. Part IIdthe effect of irradiation temperature, thermal history and orientation, Radiat. Phys. Chem. 69 (2004) 503-510, https://doi.org/10.1016/j.radphyschem.2003.10.005, 2004.
  21. B.J. Lyons, Radiolytic unsaturation decay in polyethylene. Part IIIdthe effect of certain chain transfer agents, Radiat. Phys. Chem. 70 (2004) 707-717, https://doi.org/10.1016/j.radphyschem.2003.10.006.
  22. I. Carpentieri, V. Brunella, P. Bracco, M.C. Paganini, E.M. Brach del Prever, M.P. Luda, S. Bonomi, L. Costa, Post-irradiation oxidation of different polyethylenes, Polym. Degrad. Stabil. 96 (2011) 624-629, https://doi.org/10.1016/j.polymdegradstab.2010.12.014.
  23. P. Bracco, L. Costa, M.P. Luda, N. Billingham, A review of experimental studies of the role of free radicals in polyethylene oxidation, Polym. Degrad. Stabil. 155 (2018) 67-83, https://doi.org/10.1016/j.polymdegradstab.2018.07.011.
  24. E. DeGraff, W.L. McLaughlin, Quality control for electron beam processing of polymeric materials by end-point analysis, Radiat. Phys. Chem. 18 (1981) 975-985, https://doi.org/10.1016/0146-5724(81)90288-0, 1977.
  25. C. Wenxiu, J. Haishen, L. Xiangdi, L. Dongyuan, B. Huaying, On polyethylene film dosimeter, Radiat. Phys. Chem. 16 (1980) 195-199, https://doi.org/10.1016/0146-5724(80)90015-1.
  26. A.A. Abdel-Fattah, S. Ebraheem, Z.I. Ali, F. Abdel-Rehim, Ultraviolet and Infrared spectral analysis of irradiated polyethylene films: correlation and possible application for large edose radiation dosimetry, J. Appl. Polym. Sci. 57 (1998) 1837-1851. https://doi.org/10.1002/(SICI)1097-4628(19980314)67:11<1837::AID-APP2>3.0.CO;2-M.
  27. W.L. McLaughlin, J. Silverman, M. Al-Sheikhly, W.J. Chappas, L. Zhan-Jun, A. Miller, W. Batsberg-Pedersene, High-density polyethylene dosimetry by transvinylene FTIR analysis, Radiat. Phys. Chem. 56 (1999) 503-508, https://doi.org/10.1016/S0969-806X(99)00324-2.
  28. K. Farah, T. Jerbi, F. Kuntz, A. Kovacs, Dose measurements for characterization of a semi-industrial cobalt-60 gamma-irradiation facility, Radiat. Meas. 41 (2006) 201-208, https://doi.org/10.1016/j.radmeas.2005.03.003.
  29. IAEA, Guidelines for the development, validation and routine control of industrial radiation processes, International Atomic Energy Agency, Vienna, Austria, 2013. IAEA Radiation Technology Series No. 4 (ISBN 978-92-0-135710-6), https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1581_web.pdf.
  30. D.L. Tabb, J. Servcik, J.L. Koenig, Fourier Transform infrared study of the effects of irradiation on polyethylene, J. Polym. Sci. Polym. Phys. Ed 13 (1975), https://doi.org/10.1002/pol.1975.180130413.
  31. L. Costa, I. Carpentieri, P. Bracco, Post electron-beam irradiation oxidation of orthopaedic UHMWPE, Polym. Degrad. Stabil. 93 (2008) 1695-1703, https://doi.org/10.1016/j.polymdegradstab.2008.06.003.
  32. M. Dole, D.C. Milner, T.F. Williams, Irradiation of polyethylene. II. Kinetics of unsaturation effects, J. Am. Chem. Soc. 80 (1958) 1580-1588, https://doi.org/10.1021/ja01540a018.
  33. R.W. Pearson, Mechanism of the radiation crosslinking of polyethylene, J. Polym. Sci. 25 (1957) 189-200, https://doi.org/10.1002/pol.1957.1202510906.