• 제목/요약/키워드: field-emission scanning electron microscopy

Search Result 686, Processing Time 0.031 seconds

Study of Al2O3/ZrO2 (5 nm/20nm) Nanolaminate Composite

  • Balakrishnan, G.;Wasy, A.;Ho, Ha Sun;Sudhakara, P.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • A nanolaminate consisting of alternate layers of aluminium oxide ($Al_2O_3$) (5 nm) and zirconium oxide ($ZrO_2$) (20 nm) was deposited at an optimized oxygen partial pressure of $3{\times}10^{-2}$ mbar by pulsed laser deposition. The nanolaminate film was analysed using high temperature X-ray diffraction (HTXRD) to study phase transition and thermal expansion behaviour. The surface morphology was investigated using field emission scanning electron microscopy (FE-SEM). High temperature X-ray diffraction indicated the crystallization temperature of tetragonal zirconia in the $Al_2O_3/ZrO_2$ multilayer-film was 873 K. The mean linear thermal expansion coefficient of tetragonal $ZrO_2$ was $4.7{\times}10^{-6}\;K^{-1}$ along a axis, while it was $13.68{\times}10^{-6}\;K{-1}$ along c axis in the temperature range 873-1373 K. The alumina was in amorphous nature. The FESEM studies showed the formation of uniform crystallites of zirconia with dense surface.

Micronization of Ceramic Pigments for Digital Ink-Jet Printing Process (디지털 프린팅 공정을 위한 세라믹 안료의 미립화 거동 분석)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kwon, Jong-Woo;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE $L^{\ast}a^{\ast}b^{\ast}$.

The Effects of binary metal oxide catalysts for the synthesis of glycerol carbonate (이원계 금속산화물 촉매가 글리세롤카보네이트 합성에 미치는 영향)

  • Baek, Jae-Ho;Moon, Myung-Jun;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.456-461
    • /
    • 2012
  • The glycerol carbonate was synthesized by glycerol and urea using metal oxide catalysts. The physical properties of the prepared metal oxide catalysts were investigated by X-ray diffraction (XRD), specific surface area analysis (BET), field emission scanning electron microscopy (FE-SEM) and temperature programmed desorption (TPD). In addition, we confirmed the conversion of the glycerol and the yield of the glycerol carbonate according to characteristics of metal oxide catalysts. From XRD and FE-SEM analysis, the crystallite size and crystallinity of metal oxide catalysts decrease with addition of Al. In addition, the Zn-Al mixed metal oxide had higher catalytic activity than the pure ZnO due to decreased side reaction in the synthesis of glycerol carbonate.

Corrosion Characteristics of TiN and ZrN Coated Orthodontic Brackets (TiN 및 ZrN 코팅된 교정용 브라켓의 부식특성)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • The dental orthodontic bracket requires good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. The objective of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance of orthodontic brackets using various electrochemical methods. Brackets manufactured by Ormco Co. were used, respectively, for experiment. Ion plating was carried out for coatings of bracket using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive Xray spectroscopy(EDS) and electrochemical tester. The corrosion potential of the TiN and ZrN coated bracket was comparatively high. The current density of TiN and ZrN coated bracket was smaller than that of non-coated bracket in 0.9% NaCl solution. Pit nucleated at angle of bracket slot.

A New Way to Prepare MoO3/C as Anode of Lithium ion Battery for Enhancing the Electrochemical Performance at Room Temperature

  • Yu, Zhian;Jiang, Hongying;Gu, Dawei;Li, Jishu;Wang, Lei;Shen, Linjiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.170-178
    • /
    • 2016
  • Composited molybdenum oxide and amorphous carbon (MoO3/C) as anode material for lithium ion batteries has been successfully synthesized by calcining polyaniline (PANI) doped with ammonium heptamolybdate tetrahydrate (AMo). The as prepared electrode material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical performance of the anode was investigated by galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The MoO3/C shows higher specific capacity, better cyclic performance and rate performance than pristine MoO3 at room temperature. The electrochemical of MoO3/C properties at various temperatures were also investigated. At elevated temperature, MoO3/C exhibited higher specific capacity but suffered rapidly declines. While at low temperature, the electrochemical performance was mainly limited by the low kinetics of lithium ion diffusion and the high charge transfer resistance.

Photocatalytic Activity of Electrospun PAN/TiO2 Nanofibers in Dye Photodecomposition

  • Ji, Byung Chul;Bae, Sang Su;Rabbani, Mohammad Mahbub;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.94-101
    • /
    • 2013
  • Poly(acrylonitrile) (PAN) nanofibers containing different amounts of titanium dioxide ($TiO_2$) have been prepared by electrospinning technique. Photocatalytic activity of these electrospun PAN/$TiO_2$ nanofibers and the effect of $TiO_2$ content on the photocatalytic efficiency of PAN/$TiO_2$ nanofibers have been evaluated by monitoring the photodecomposition of fluorescein dye, rhodamine B and methylene blue under UV irradiation with respect to irradiation time. Moreover, the effect of hydrogen peroxide ($H_2O_2$) on the photocatalytic behavior of PAN/$TiO_2$ nanofibers has also been investigated. The results showed that PAN/$TiO_2$ nanofibers are effective photocatalyst and their photocatalytic efficiency increases with the increase of $TiO_2$ content in the PAN/$TiO_2$ nanofibers. It is also observed that the presence of $H_2O_2$ significantly enhances the photocatalytic ability of PAN/$TiO_2$ nanofibers. The morphology and the photocatalytic behavior of the PAN/$TiO_2$ nanofibers containing different amounts of $TiO_2$ nanoparticles have been investigated by field-emission scanning electron microscopy (FE-SEM) and UV/Visible spectroscopy, respectively.

증발증착법에 의해 형성된 금속 입자를 이용한 단결정 실리콘의 습식식각

  • Go, Yeong-Hwan;Ju, Dong-Hyeok;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.438-438
    • /
    • 2012
  • 은(Ag) 또는 금(Au) 입자를 촉매로 이용하여 습식식각을 통해 선택적으로 짧은 시간동안 단결정 실리콘 웨이퍼의 표면을 텍스쳐링하여 반사방지막 특성을 효과적으로 얻을 수 있다. 일반적으로 금속입자는 주로 금속 이온이 포함된 용액이나, 전기증착법을 통해서 실리콘 웨이퍼 표면에 형성시켰지만, 금속입자의 크기와 분포를 조절하기 어려웠다. 하지만, 최근 진공장비를 이용하여 열증발증착법(thermal evaporation)과 급속열처리법(rapid thermal annealing)을 통해서 금속입자를 대면적으로 크기와 분포를 균일하게 조절할 수 있다. 이러한 현상은 열적 비젖음(thermal dewetting) 현상에 의해 실리콘 표면위에 증착된 금속 박막으로부터 나노입자로 형성할 수 있다. 본 연구에서는 실리콘 (100)기판위에 다양한 크기의 은 또는 금 나노입자를 형성시켜 식각용액에 짧은 시간동안 담그어 식각하여, 텍스쳐링 효과와 반사방지(antireflection) 특성을 분석하였다. 실험을 위해 각각 은 또는 금 박막을 열증발증착법을 이용하여 ~3-8 nm의 두께로 형성시켰으며, 급속가열장치를 이용하여 $500^{\circ}C$에서 5분 동안 열처리하였다. 그리고 탈이온수(de-ionized water)에 불화수소와 과산화수소가 혼합된 식각용액에 1-5분 동안 습식식각을 하였다. 각각의 텍스쳐링 된 샘플의 식각의 상태와 깊이를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, UV-vis-NIR spectrophotometer를 이용하여 300 nm에서 1,200 nm의 반사특성을 분석하였다. 또한 RCWA (rigorous coupled wave analysis) 시뮬레이션을 이용하여 텍스쳐링 된 기하학적구조에 대하여 반사방지막 특성을 이론적으로 분석하였다.

  • PDF

Synthesis of Carbonyl Iron-reinforced Polystyrene by High Energy Ball Milling

  • Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Jin-Chun;Kim, Young-Soo;Kim, Young-Hyuk;Nazarenko, Olga B.
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.276-281
    • /
    • 2016
  • Carbonyl iron (CI) is successfully incorporated as an additive into a polystyrene (PS) matrix via a highenergy ball milling method, under an n-hexane medium with volume fractions between 1% and 5% for electromagnetic interference shielding applications by the combination of magnetic CI and an insulating PS matrix. The morphology and the dispersion of CI are investigated by field emission scanning electron microscopy, which indicates a uniform distribution of CI in the PS matrix after 2 h of milling. The thermal behavior results indicate no significant degradation of the PS when there is a slight increase in the onset temperature with the addition of CI powder, when compared to the as-received PS pellet. After milling, there are no interactions between the CI and the PS matrix, as confirmed by Fourier transformed infrared spectroscopy. In this study, the milled CI-PS powder is extruded to make filaments, and can have potential applications in the 3-D printing industry.

Synthesis and Nucleation Behavior of MoO3 Nano Particles with Concentration of Precursors (전구체 농도에 따른 MoO3 나노 분말 합성 및 핵생성 거동)

  • Lee, Seyoung;Kwon, Namhun;Roh, Jaeseok;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.394-400
    • /
    • 2020
  • Molybdenum trioxide (MoO3) is used in various applications including sensors, photocatalysts, and batteries owing to its excellent ionic conductivity and thermal properties. It can also be used as a precursor in the hydrogen reduction process to obtain molybdenum metals. Control of the parameters governing the MoO3 synthesis process is extremely important because the size and shape of MoO3 in the reduction process affect the shape, size, and crystallization of Mo metal. In this study, we fabricated MoO3 nanoparticles using a solution combustion synthesis (SCS) method that utilizes an organic additive, thereby controlling their morphology. The nucleation behavior and particle morphology were confirmed using ultraviolet-visible spectroscopy (UV-vis) and field emission scanning electron microscopy (FE-SEM). The concentration of the precursor (ammonium heptamolybdate tetrahydrate) was adjusted to be 0.1, 0.2, and 0.4 M. Depending on this concentration, different nucleation rates were obtained, thereby resulting in different particle morphologies.

Photoactivity of SnO2-Doped TiO2 Powder Sensitized with Quinacridone (Quinacridone을 첨가시킨 SnO2가 도핑된 TiO2 분말의 광촉매 특성)

  • Jung, Miewon;Kwak, Yunjung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.650-653
    • /
    • 2007
  • $SnO_2$-doped $TiO_2$ powder was obtained from tin (IV) bis(acetylacetonate) dichloride and titanium diisopropoxide bis(acetylacetonate) with quinacridone as the dye sensitizer molecule. The structural changes of the reaction mixture were monitored by fourier transform infrared (FT-IR) spectroscopy. The morphology and microstructure of gel powder were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). The photocatalytic activity of these powders with the anatase structure was investigated by using indigo carmine solution as a test dye