• Title/Summary/Keyword: field of energy

Search Result 5,827, Processing Time 0.034 seconds

Magnetization of a Modified Magnetic Quantum Dot

  • Park, Dae-Han;Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.154-157
    • /
    • 2016
  • The energy dispersion and magnetization of a modified magnetic dot are investigated numerically. The effects of additional electrostatic potential, magnetic field non-uniformity, and Zeeman spin splitting are studied. The modified magnetic quantum dot is a magnetically formed quantum structure that has different magnetic fields inside and outside of the dot. The additional electrostatic potential prohibits the ground-state angular momentum transition in the energy dispersion as a function of the magnetic field inside the dot, and provides oscillation of the magnetization as a function of the chemical potential energy. The magnetic field non-uniformity broadens the shape of the magnetization. The Zeeman spin splitting produces additional peaks on the magnetization.

Extraction and Analysis for Emphasis Development Field in Green Construction Technology (녹색 건설기술의 중점 개발 영역에 대한 추출 및 분석)

  • Yang, Jin-Kook;Shin, Sung-Joon;Kim, Ki-Nam;Hwang, Chi-Ho;Jang, Yun-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.306-307
    • /
    • 2014
  • Green building technology has the potential a competitiveness. Reflecting this situation, the renewable energy market is growing rapidly. And, this field became value-added field in construction industry. In this study perform to prioritize the value improvements of green building technologies. To do this, first, we will extract potential development field through literature and case studies. Next, we will built a hierarchy structure based on the economic efficiency, technical skill, and policy. Third, we decide to prioritize between the items by performing AHP analysis.

  • PDF

Performance Analysis of Grid-Connected PCS for PV System by Field Demonstration Test

  • So J.H.;Jung Y.S.;Yu G.J.;Jung M.W.;Kang G.H.;Choi J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.516-519
    • /
    • 2003
  • 3kW photovoltaic (PV) systems and data acquisition system are constructed for performance analysis of PV system at field demonstration test center (FDTC) of Korea. As climatic and irradiation conditions are varied, the performance characteristics of PV system are collected and analyzed in data acquisition system. From these results, the performances of gird-connected power conditioning system (PCS) fur PV system have been evaluated and analyzed. Furthermore, performance indices of grid-connected PCS e.g. output power, efficiency, loss factor, and the other index at the site are reviewed.

  • PDF

An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement (실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토)

  • Choi, Younhee;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.

Diffraction of water waves by an array of vertical barriers and heterogeneous bottom

  • Mondal, R.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The interaction of head waves with an infinite row of identical, equally spaced, rectangular breakwaters is investigated in the presence of uneven bottom topography. Using linear water wave theory and matched eigenfunction expansion method, the boundary value problem is transformed into a system of linear algebraic equations which are numerically solved to know the velocity potentials completely. Utilizing this method, reflected and transmitted wave energy are computed for different physical parameters along with the wave field in the vicinity of breakwaters. It is observed that the wave field becomes more complicated when the incoming wavelength becomes smaller than the channel width. A critical ratio of the gap width to the channel width, corresponding to the inflection point of the transmitted energy variation, is identified for which 1/3 of the total energy is transmitted. Similarly, depending on the incident wavelength, there is a critical breakwater width for which a minimum energy is transmitted. Further, the accuracy of the computed results is verified by using the derived energy relation.

Development of indirect EFBEM for radiating noise analysis including underwater problems

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.392-403
    • /
    • 2013
  • For the analysis of radiating noise problems in medium-to-high frequency ranges, the Energy Flow Boundary Element Method (EFBEM) was developed. EFBEM is the analysis technique that applies the Boundary Element Method (BEM) to Energy Flow Analysis (EFA). The fundamental solutions representing spherical wave property for radiating noise problems in open field and considering the free surface effect in underwater are developed. Also the directivity factor is developed to express wave's directivity patterns in medium-to-high frequency ranges. Indirect EFBEM by using fundamental solutions and fictitious source was applied to open field and underwater noise problems successfully. Through numerical applications, the acoustic energy density distributions due to vibration of a simple plate model and a sphere model were compared with those of commercial code, and the comparison showed good agreement in the level and pattern of the energy density distributions.

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}-BONDINGS,\;{\pi}-FAR$ INFRARED RAYS AND N-MACHINE

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.34-44
    • /
    • 1996
  • N-machine produces more than input energy at above 3000 rpm. any space energy is absorbed when the N-machine is rotating at a very high velocity. Laws of electromagnetics verify that normal conduction is due to that electrons moves from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next. The ${\pi}-far$ infrared rays are generated from the resonance and rotation of the electrons on the orbitals of three-dimensional crystallizing ${\pi}-bonding$ atoms. Material in universe is composed of ${\pi}-rays$, which have alternative outward electric field. If the alternative outward electric fields of the ${\pi}-rays$ are resonant each other they make attraction force, which is the gravity. The collection of space energy is due to a attraction force between the radially alternating electric field and the ${\pi}-far$ infrared rays in the space. Electrons flow by absorbed density difference of ${\pi}-far$ infrared rays along a conduction wire, which also verifies that normal electron conduction is due to a flow from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next.

  • PDF

Improvement of CH selection of WSN Protocol

  • Lee, WooSuk;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.53-58
    • /
    • 2017
  • A WSN (Wireless Sensor Network) is a network that is composed of wireless sensor nodes. There is no restriction on the place where it can be installed because it is composed wirelessly. Instead, sensor nodes have limited energy. Therefore, to use the network for a long time, energy consumption should be minimized. Several protocols have been proposed to minimize energy consumption, and the typical protocol is the LEACH protocol. The LEACH protocol is a cluster-based protocol that minimizes energy consumption by dividing the sensor field into clusters. Depending on how you organize the clusters of sensor field, network lifetimes may increase or decrease. In this paper, we will improve the network lifetime by improving the cluster head selection method in LEACH Protocol.

In situ Electric-Field-Dependent X-Ray Diffraction Experiments for Ferroelectric Ceramics (강유전 세라믹의 전기장 인가에 따른 in situ X-선 회절 실험)

  • Choi, Jin San;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.431-438
    • /
    • 2022
  • In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.

SIMULATING NONTHERMAL RADIATION FROM CLUSTER RADIO GALAXIES

  • TREGILLIS I. L.;JONES T. W.;RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.509-515
    • /
    • 2004
  • We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.