DOI QR코드

DOI QR Code

SIMULATING NONTHERMAL RADIATION FROM CLUSTER RADIO GALAXIES

  • TREGILLIS I. L. (Applied Physics Division, MS B259, Los Alamos National Laboratory) ;
  • JONES T. W. (School of Physics and Astronomy, University of Minnesota) ;
  • RYU DONGSU (Department of Astronomy & Space Science, Chungnam National University)
  • Published : 2004.12.01

Abstract

We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.

Keywords

References

  1. Clarke, T. E. 2004, these proceedings
  2. Cooke, B. A., Lawrence, A., & Perola, G. C. 1978, MNRAS, 182, 661 https://doi.org/10.1093/mnras/182.4.661
  3. Ensslin, T., Vogt, C., Clarke, T. E., & Taylor, G. B. 2003, ApJ, 597, 870 https://doi.org/10.1086/378631
  4. Gooch, R. E. 1995, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes (San Francisco: ASP), 80
  5. Harris, D. E. & Grindlay, J. E. 1979, MNRAS, 188, 25 https://doi.org/10.1093/mnras/188.1.25
  6. Harris, D. E. & Romanishin, W. 1974, ApJ, 188, 209 https://doi.org/10.1086/152707
  7. Johnston-Hollitt, M. 2004, these proceedings
  8. Jones, T. W., O'Dell, S. L., & Stein, W. A. 1974, ApJ, 188, 353 (JOS) https://doi.org/10.1086/152724
  9. Jones, T. W., Ryu, D., & Engel, A. 1999, ApJ, 512, 105 https://doi.org/10.1086/306772
  10. Laing, R. A. 2002, MNRAS, 329, 417 https://doi.org/10.1046/j.1365-8711.2002.05000.x
  11. Li, H. 2004, these proceedings
  12. Matthews, A. P. & Scheuer, P. A. G. 1990, MNRAS, 242, 623 https://doi.org/10.1093/mnras/242.4.623
  13. Miley, G. 1980, ARA&A, Vol. 18 (Annual Reviews, Inc.), 165 https://doi.org/10.1146/annurev.aa.18.090180.001121
  14. Nulsen, P. E. J., David, L. P., McNamara, B. R., Jones, C., Forman, W. R., & Wise, M. 2002, ApJ, 568, 163 https://doi.org/10.1086/338494
  15. Rudnick, L. & Blundell, K. 2003, ApJ, 588, 143 https://doi.org/10.1086/373891
  16. Tregillis, I. L., Jones, T. W., & Ryu, D. 2001, ApJ, 557, 475 https://doi.org/10.1086/321657
  17. Tregillis, I. L., Jones, T. W., & Ryu, D. 2004, ApJ, 601, 778 (TJR04) https://doi.org/10.1086/380756

Cited by

  1. 3D magnetohydrodynamic simulations of the evolution of magnetic fields in Fanaroff-Riley class II radio sources vol.417, pp.1, 2011, https://doi.org/10.1111/j.1365-2966.2011.19271.x