• Title/Summary/Keyword: field measurements

Search Result 2,774, Processing Time 0.029 seconds

Development of 2.5D Electron Dose Calculation Algorithm (2.5D 전자선 선량계산 알고리즘 개발)

  • 조병철;고영은;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.

  • PDF

Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor (지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정)

  • Kim, Hyun-Gu;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • Pot experiments using sand culture were conducted in 2004 under greenhouse conditions to evaluate the effect of nitrogen deficiency on red pepper biomass. Nitrogen stress was imposed by implementing 6 levels (40% to 140%) of N in Hoagland's nutrient solution for red pepper. Canopy reflectance measurements were made with hand held spectral sensors including $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$, and $Field\;Scout^{TM}$ Chlorophyll meter, and a spectroradiometer as well as Minolta SPAD-502 chlorophyll meter. Canopy reflectance and dry weight of red pepper were measured at five growth stages, the 30th, 40th, 50th, 80th and 120th day after planting(DAT). Dry weight of red pepper affected by nitrogen stress showed large differences between maximum and minimum values at the 120th DAT ranged from 48.2 to $196.6g\;plant^{-1}$, respectively. Several reflectance indices obtained from $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$ and Spectroradiometer including chlorophyll readings were compared for evaluation of red pepper biomass. The reflectance indices such as rNDVI, aNDVI and gNDVI by the $Crop\;Circle^{TM}$ sensor showed the highest correlation coefficient with dry weight of red pepper at the 40th, 50th, and 80th DAT, respectively. Also these reflectance indices at the same growth station was closely correlated with dry weight, yield, and nitrogen uptake of red pepper at the 120th DAT, especially showing the best correlation coefficient at the 80th DAT. From these result, the aNDVI at the 80th DAT can significantly explain for dry weight of red pepper at the 120th DAT as well as for application level of nitrogen fertilizer. Consequently ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season nitrogen management for red pepper providing both spatial and temporal information.

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer (L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer ($20\;MHz{\sim}20\;GHz$), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ with $5^{\circ}$ interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-June) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-July). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-Aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized ${\sigma}^{\circ}$ steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage.

A Performance Evaluation of the e-Gov Standard Framework on PaaS Cloud Computing Environment: A Geo-based Image Processing Case (PaaS 클라우드 컴퓨팅 환경에서 전자정부 표준프레임워크 성능평가: 공간영상 정보처리 사례)

  • KIM, Kwang-Seob;LEE, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2018
  • Both Platform as a Service (PaaS) as one of the cloud computing service models and the e-government (e-Gov) standard framework from the Ministry of the Interior and Safety (MOIS) provide developers with practical computing environments to build their applications in every web-based services. Web application developers in the geo-spatial information field can utilize and deploy many middleware software or common functions provided by either the cloud-based service or the e-Gov standard framework. However, there are few studies for their applicability and performance in the field of actual geo-spatial information application yet. Therefore, the motivation of this study was to investigate the relevance of these technologies or platform. The applicability of these computing environments and the performance evaluation were performed after a test application deployment of the spatial image processing case service using Web Processing Service (WPS) 2.0 on the e-Gov standard framework. This system was a test service supported by a cloud environment of Cloud Foundry, one of open source PaaS cloud platforms. Using these components, the performance of the test system in two cases of 300 and 500 threads was assessed through a comparison test with two kinds of service: a service case for only the PaaS and that on the e-Gov on the PaaS. The performance measurements were based on the recording of response time with respect to users' requests during 3,600 seconds. According to the experimental results, all the test cases of the e-Gov on PaaS considered showed a greater performance. It is expected that the e-Gov standard framework on the PaaS cloud would be important factors to build the web-based spatial information service, especially in public sectors.

The Continuous Measurement of CO2 Efflux from the Forest Soil Surface by Multi-Channel Automated Chamber Systems (다중채널 자동챔버시스템에 의한 삼림토양의 이산화탄소 유출량의 연속측정)

  • Joo, Seung Jin;Yim, Myeong Hui;Ju, Jae-Won;Won, Ho-yeon;Jin, Seon Deok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 2021
  • Multichannel automated chamber systems (MCACs) were developed for the continuous monitoring of soil CO2 efflux in forest ecosystems. The MCACs mainly consisted of four modules: eight soil chambers with lids that automatically open and close, an infrared CO2 analyzer equipped with eight multichannel gas samplers, an electronic controller with time-relay circuits, and a programmable logic datalogger. To examine the stability and reliability of the developed MCACs in the field during all seasons with a high temporal resolution, as well as the effects of temperature and soil water content on soil CO2 efflux rates, we continuously measured the soil CO2 efflux rates and micrometeorological factors at the Nam-san experimental site in a Quercus mongolica forest floor using the MCACs from January to December 2010. The diurnal and seasonal variations in soil CO2 efflux rates markedly followed the patterns of changes in temperature factors. During the entire experimental period, the soil CO2 efflux rates were strongly correlated with the temperature at a soil depth of 5 cm (r2 = 0.92) but were weakly correlated with the soil water content (r2 = 0.27). The annual sensitivity of soil CO2 efflux to temperature (Q10) in this forest ranged from 2.23 to 3.0, which was in agreement with other studies on temperate deciduous forests. The annual mean soil CO2 efflux measured by the MCACs was approximately 11.1 g CO2 m-2 day-1. These results indicate that the MCACs can be used for the continuous long-term measurements of soil CO2 efflux in the field and for simultaneously determining the impacts of micrometeorological factors.

Estimation of Carbon Stock and Annual CO2 Uptake of Four Species at the Sejong National Arboretum - Pinus densiflora, Metasequoia glyptostroboides, Aesculus turbinata, Chionanthus retusus - (국립세종수목원 교목 4종의 탄소 저장량 및 연간 이산화탄소 흡수량 평가 - 소나무, 메타세쿼이아, 칠엽수, 이팝나무를 대상으로 -)

  • Hak Koo KIm;Yong Sik Hong;Yun Kyung Lim;I Seul Yun;Ki Seok Do;Chan Hyung Jung;Chi Mun Lee;Hoi Eun Roh;Sin Koo Kang;Chan-Beom Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.1
    • /
    • pp.41-48
    • /
    • 2023
  • This study was conducted to confirm the possibility of a new carbon stock in the Sejong National Arboretum, a major urban greenspace in Sejong-si. This study involved field and ground surveys of 1,336 trees, including 794 Pinus densiflora trees with a diameter at breast height (DBH) of above 5.5cm, which are the most planted in the Sejong National Arboretum, Chionanthus retusus 154 trees planted, Metasequoia glyptostroboides 216 trees, and Aesculus turbinata 172 trees as street trees. Measurements were performed from April to November. Based on the results of the survey, the carbon storage and annual carbon stock were calculated using the annual carbon stock estimation equation used in the forest carbon offset projects. As a result of comparing the carbon stock of the 12cm diameter class, which is the most distributed of four major trees, it was found in the order of C. retusus (0.0136tC/tree), P. densiflora (0.0126tC/tree), M. glyptostroboides (0.0092tC/tree), and A. turbinata (0.0076tC/tree). In addition, the field survey measurement data compared with terrestrial LiDAR measurement data for 20 trees showed a difference of 10.0cm in tree height and 1.7cm in diameter at breast height (p<0.05). In the future, additional carbon stock and annual uptake of other species planted in the arboretum are expected to promote the carbon uptake effect of the arboretum and contribute to the achievement of the national NDC. In the long term, it is also necessary to develop the carbon uptake factor of trees and shrubs mainly used to calculate the exact carbon uptake amount of trees mainly used in urban forests and gardens.

Application and Comparative Analysis of River Discharge Estimation Methods Using Surface Velocity (표면유속을 이용한 하천 유량산정방법의 적용 및 비교 분석)

  • Jae Hyun, Song;Seok Geun Park;Chi Young Kim;Hung Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.15-32
    • /
    • 2023
  • There are some difficulties such as safety problem and need of manpower in measuring discharge by submerging the instruments because of many floating debris and very fast flow in the river during the flood season. As an alternative, microwave water surface current meters have been increasingly used these days, which are easy to measure the discharge in the field without contacting the water surface directly. But it is also hard to apply the method in the sudden and rapidly changing field conditions. Therefore, the estimation of the discharge using the surface velocity in flood conditions requires a theoretical and economical approach. In this study, the measurements from microwave water surface current meter and rating curve were collected and then analyzed by the discharge estimation method using the surface velocity. Generally, the measured and converted discharge are analyzed to be similar in all methods at a hydraulic radius of 3 m or over or a mean velocity of 2 ㎧ or more. Besides, the study computed the discharge by the index velocity method and the velocity profile method with the maximum surface velocity in the section where the maximum velocity occurs at the high water level range of the rating curve among the target locations. As a result, the mean relative error with the converted discharge was within 10%. That is, in flood season, the discharge estimation method using one maximum surface velocity measurement, index velocity method, and velocity profile method can be applied to develop high-level extrapolation, therefore, it is judged that the reliability for the range of extrapolation estimation could be improved. Therefore, the discharge estimation method using the surface velocity is expected to become a fast and efficient discharge measurement method during the flood season.

Variations in subtidal surface currents observed with HF radar in the costal waters off the Saemangeum areas (새만금 연안역에서 HF radar에 의해 관측된 조하주기 표층해류의 변화)

  • Kim, Chang-Soo;Lee, Sang-Ho;Son, Young-Tae;Kwon, Hyo-Keun;Lee, Kwang-Hee;Choi, Byoung-Hy
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.56-66
    • /
    • 2008
  • Subtidal surface currents are derived from HF radar measurements in the Saemangeum coastal ocean of the Yellow sea in July 2002 and from September to November 2004. The surface current field is analyzed to examine the effect of wind, river plume and coastline change on the spatial distribution and temporal variation of the surface currents. In July 2002, average wind speed was 0.5 m/s and freshwater discharge from the Keum River was $0.88{\times}10^7\;ton/day$. Temporal mean currents ($\overline{U}$) flow to the northwest with speed of $7{\sim}10\;cm/s$ near the Keum River estuary, to the west as fast as 13 cm/s near the opening gap of the Saemangeum $4^{th}$ dyke, and to the northwest off the Gogunsan-archipelago. This flow pattern is a result of the Keum River plume dispersal and tide-residual currents from the opening gap of the Saemangeum $4^{th}$ dyke. Time series of spatially-averaged current (<$U-\overline{U}$>) direction is highly (r=0.98) correlated with wind direction. From September to November 2004, the opening gap of the Saemangeum $4^{th}$ dyke was closed, northwesterly wind blew with speed of 2.5 m/s on average and the Keum River discharge was $1.19{\times}10^7\;ton/day$. Temporal mean current field ($\overline{U}$) has weak surface flow in most of the coastal ocean and relatively strong currents flow to the southwest with speed of 10 cm/s along the shape coastline of the Gogunsan-archipelago and the Saemangeum $4^{th}$ dyke. The strong flow is generated by the prevailing northwesterly wind which pushes the Keum River plume toward the Saemangeum $4^{th}$ dyke. The residual currents from the opening gap of the Saemangeum $4^{th}$ dyke disappeared and correlation coefficient between time series of spatially-averaged current () direction and the wind direction is 0.69.

Dosimetric Evaluation of a Small Intraoral X-ray Tube for Dental Imaging (치과용 초소형 X-선 튜브의 선량평가)

  • Ji, Yunseo;Kim, YeonWoo;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.160-167
    • /
    • 2015
  • Radiation exposure from medical diagnostic imaging procedures to patients is one of the most significant interests in diagnostic x-ray system. A miniature x-ray intraoral tube was developed for the first time in the world which can be inserted into the mouth for imaging. Dose evaluation should be carried out in order to utilize such an imaging device for clinical use. In this study, dose evaluation of the new x-ray unit was performed by 1) using a custom made in vivo Pig phantom, 2) determining exposure condition for the clinical use, and 3) measuring patient dose of the new system. On the basis of DRLs (Diagnostic Reference Level) recommended by KDFA (Korea Food & Drug Administration), the ESD (Entrance Skin Dose) and DAP (Dose Area Product) measurements for the new x-ray imaging device were designed and measured. The maximum voltage and current of the x-ray tubes used in this study were 55 kVp, and 300 mA. The active area of the detector was $72{\times}72mm$ with pixel size of $48{\mu}m$. To obtain the operating condition of the new system, pig jaw phantom images showing major tooth-associated tissues, such as clown, pulp cavity were acquired at 1 frame/sec. Changing the beam currents 20 to $80{\mu}A$, x-ray images of 50 frames were obtained for one beam current with optimum x-ray exposure setting. Pig jaw phantom images were acquired from two commercial x-ray imaging units and compared to the new x-ray device: CS 2100, Carestream Dental LLC and EXARO, HIOSSEN, Inc. Their exposure conditions were 60 kV, 7 mA, and 60 kV, 2 mA, respectively. Comparing the new x-ray device and conventional x-ray imaging units, images of the new x-ray device around teeth and their neighboring tissues turn out to be better in spite of its small x-ray field size. ESD of the new x-ray device was measured 1.369 mGy on the beam condition for the best image quality, 0.051 mAs, which is much less than DRLs recommended by IAEA (International Atomic Energy Agency) and KDFA, both. Its dose distribution in the x-ray field size was observed to be uniform with standard deviation of 5~10 %. DAP of the new x-ray device was $82.4mGy*cm^2$ less than DRL established by KDFA even though its x-ray field size was small. This study shows that the new x-ray imaging device offers better in image quality and lower radiation dose compared to the conventional intraoral units. In additions, methods and know-how for studies in x-ray features could be accumulated from this work.

Effect of Additional 1 hour T-piece Trial on Weaning Outcome to the Patients at Minimum Pressure Support (최소압력보조 수준에서 추가적 1시간 T-piece 시도가 이탈에 미치는 영향)

  • Hong, Sang-Bum;Koh, Youn-Suck;Lim, Chae-Man;Ann, Jong-Jun;Park, Wann;Shim, Tae-Son;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.813-822
    • /
    • 1998
  • Background: Extubation is recommended to be performed at minimum pressure support (PSmin) during the pressure support ventilation (PSV). In field, physicians sometimes perform additional 1 hr T-piece trial to the patient at PSmin to reduce re-intubation risk. Although it provides confirmation of patient's breathing reserve, weaning could be delayed due to increased airway resistance by endotracheal tube. Methods: To investigate the effect of additional 1 hr T-piece trial on weaning outcome, a prospective study was done in consecutive 44 patients who had received mechanical ventilation more than 3 days. Respiratory mechanics, hemodymic, and gas exchange measurements were done and the level of PSmin was calculated using the equation (PSmin=peak inspiratory flow rate $\times$ total ventilatory system resistance) at the 15cm $H_2O$ of pressure support. At PSmin, the patients were randomized into intervention (additional 1 hr T-piece trial) and control (extubation at PSmin). The measurements were repeated at PSmm, during weaning process (in cases of intervention), and after extubation. The weaning success was defined as spontaneous breathing more than 48hr after extubation. In intervention group, failure to continue weaning process was also considered as weaning failure. Results: Thirty-six patients with 42 times weaning trial were satisfied to the protocol. Mean PSmin level was 7.6 (${\pm}1.9$)cm $H_2O$. There were no differences in total ventilation times (TVT), APACHE III score, nutritional indices, and respiratory mechanics at PSmin between 2 groups. The weaning success rate and re-intubation rate were not different between intervention group (55% and 18% in each) and control group (70% and 20% in each) at first weaning trial. Work of breathing, pressure time product, and tidal volume were aggravated during 1 hr T-piece trial compared to those of PSmin in intervention group ($10.4{\pm}1.25$ and $1.66{\pm}1.08$ J/L in work of breathing) ($191{\pm}232$ and $287{\pm}217$cm $H_2O$ s/m in pressure time product) ($0.33{\pm}0.09$ and $0.29{\pm}0.09$ L in tidal volume) (P<0.05 in each). As in whole, TVT, and tidal volume at PSmin were significantly different between the patients with weaning success ($246{\pm}195$ hr, $0.43{\pm}0.11$ L) and the those with weaning failure ($407{\pm}248$ hr, $0.35{\pm}0.10$L) (P<0.05 in each). Conclusion : There were no advantage to weaning outcome by addition of 1 hr T-piece trial compared to prompt extubation to the patient at PS min.

  • PDF