DOI QR코드

DOI QR Code

국립세종수목원 교목 4종의 탄소 저장량 및 연간 이산화탄소 흡수량 평가 - 소나무, 메타세쿼이아, 칠엽수, 이팝나무를 대상으로 -

Estimation of Carbon Stock and Annual CO2 Uptake of Four Species at the Sejong National Arboretum - Pinus densiflora, Metasequoia glyptostroboides, Aesculus turbinata, Chionanthus retusus -

  • 김학구 (한국수목원정원관리원 도시생물다양성연구실) ;
  • 홍용식 (한국수목원정원관리원 도시생물다양성연구실) ;
  • 임윤경 (한국수목원정원관리원 도시생물다양성연구실) ;
  • 윤이슬 (한국수목원정원관리원 도시생물다양성연구실) ;
  • 도기석 ((주)카탈로닉스) ;
  • 정찬형 (에스케이임업 주식회사) ;
  • 이지문 (에스케이임업 주식회사) ;
  • 노회은 (한국수목원정원관리원 도시생물다양성연구실) ;
  • 강신구 (한국수목원정원관리원 도시생물다양성연구실) ;
  • 김찬범 (한국수목원정원관리원 도시생물다양성연구실)
  • Hak Koo KIm (Division of urban biodiversity research, Korea Arboretum and Gardens Institute) ;
  • Yong Sik Hong (Division of urban biodiversity research, Korea Arboretum and Gardens Institute) ;
  • Yun Kyung Lim (Division of urban biodiversity research, Korea Arboretum and Gardens Institute) ;
  • I Seul Yun (Division of urban biodiversity research, Korea Arboretum and Gardens Institute) ;
  • Ki Seok Do (Division of urban biodiversity research, Korea Arboretum and Gardens Institute) ;
  • Chan Hyung Jung (Catalonix Co., Ltd.) ;
  • Chi Mun Lee (SK Forest Co., Ltd.) ;
  • Hoi Eun Roh (SK Forest Co., Ltd.) ;
  • Sin Koo Kang (Division of urban biodiversity research, Korea Arboretum and Gardens Institute) ;
  • Chan-Beom Kim (Division of urban biodiversity research, Korea Arboretum and Gardens Institute)
  • 투고 : 2022.12.01
  • 심사 : 2022.12.27
  • 발행 : 2023.02.28

초록

본 연구는 세종특별시의 주요 도심 녹지인 국립세종수목원을 대상으로 신규 탄소흡수원으로서의 가능성을 확인하기 위해 수행되었다. 흉고직경 5.5cm 이상 소나무 794본과 가로수로 식재된 이팝나무 154본, 메타세쿼이아 216본, 칠엽수 172본 등 총 1,336본의 수목을 대상으로 4월부터 11월까지 현장조사와 지상라이다 측정을 수행하였다. 조사 결과를 바탕으로 산림탄소상쇄제도에서 사용하고 있는 연간 이산화탄소 흡수량 추정식을 사용하여 탄소 저장량 및 연간 이산화탄소 흡수량을 산정하였다. 주요 수목 4종이 가장 많이 분포하는 흉고직경 12cm 직경급의 탄소 저장량을 비교해본 결과, 이팝나무(0.0136tC/본), 소나무(0.0126tC/본), 메타세쿼이아(0.0092tC/본), 칠엽수(0.0076tC/본) 순으로 나타났다. 그리고 20본을 대상으로 지상라이다 측정자료와 비교해 본 현장조사 자료는 수고 10.0cm, 흉고직경은 1.7cm 차이를 보였다(p<0.05). 추후 정확하고 효율적인 측정방법에 대한 연구가 필요할 것으로 보인다. 또한 수목원에 식재된 다른 종의 탄소 저장량 및 연간 이산화탄소 흡수량을 추가로 구축하면 수목원의 탄소흡수 효과를 홍보하고 국가 NDC 달성에 기여할 수 있을 것으로 판단된다. 장기적으로 도시숲 및 정원에 주로 사용되는 수종의 정확한 탄소 저장량 산정을 위해 주로 사용되는 교목이나 관목의 탄소흡수계수개발도 필요할 것으로 사료된다.

This study was conducted to confirm the possibility of a new carbon stock in the Sejong National Arboretum, a major urban greenspace in Sejong-si. This study involved field and ground surveys of 1,336 trees, including 794 Pinus densiflora trees with a diameter at breast height (DBH) of above 5.5cm, which are the most planted in the Sejong National Arboretum, Chionanthus retusus 154 trees planted, Metasequoia glyptostroboides 216 trees, and Aesculus turbinata 172 trees as street trees. Measurements were performed from April to November. Based on the results of the survey, the carbon storage and annual carbon stock were calculated using the annual carbon stock estimation equation used in the forest carbon offset projects. As a result of comparing the carbon stock of the 12cm diameter class, which is the most distributed of four major trees, it was found in the order of C. retusus (0.0136tC/tree), P. densiflora (0.0126tC/tree), M. glyptostroboides (0.0092tC/tree), and A. turbinata (0.0076tC/tree). In addition, the field survey measurement data compared with terrestrial LiDAR measurement data for 20 trees showed a difference of 10.0cm in tree height and 1.7cm in diameter at breast height (p<0.05). In the future, additional carbon stock and annual uptake of other species planted in the arboretum are expected to promote the carbon uptake effect of the arboretum and contribute to the achievement of the national NDC. In the long term, it is also necessary to develop the carbon uptake factor of trees and shrubs mainly used to calculate the exact carbon uptake amount of trees mainly used in urban forests and gardens.

키워드

과제정보

본 연구는 산림청 '생활밀착형 조성사업'의 일환으로 수행된 연구결과임.

참고문헌

  1. Bauwens S, Bartholomeus H, Calders K, Lejeune P. 2016. Forest inventory with terrestrial LiDAR: A comparsion of static and handheld mobile laser scanning. Forests 7(6): 127.
  2. Cho DY, Kim EM. 2012. Extraction of Street Tree Information Using Airborne LIDAR Data. Journal of Korea Spatial Information Society 20(6): 45-57. [Korean Lierature] https://doi.org/10.12672/ksis.2012.20.6.045
  3. Choi SW, Kim TG, Kim JP, Kim SJ. 2022. Assessment on the Applicability of a Handheld LiDAR for Measuring the Geometric Structures of Forest. Journal of the Korean Association of Geographic Information Studies 25(2): 48-58.
  4. Hyyppa E, Yu X, Kaartinen H, Hakala T, Kukko A, Vastaranta M, Hyyppa J. 2020. Comparsion of backpack, handheld, under-canopy UAV, and above-canopu UAV laser scanning for field reference data collection in boreal forests. Remote Sense 12(20): 3327.
  5. IPCC. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  6. IPCC. 2018. Global Warming of 1.5 ℃. An IPCC Special Report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
  7. Jo HK, Kim JY, Park HM. 2013. Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus Koraiensis -. Korean Journal of Environment and Ecology 27(5): 571-578. [Korean Lierature] https://doi.org/10.13047/KJEE.2013.27.5.571
  8. Jo HK, Kim JY, Park HM. 2014. Carbon Reduction Effects Urban Landscape Trees and Development of Quantitative Models. Journal of the Korean Institute of Landscape Architecture 42(5): 13-21. [Korean Lierature] https://doi.org/10.9715/KILA.2014.42.5.013
  9. Kang JT, Son YM, Jeon JH, Lee SJ. 2017. Assessment of Carbon Stock and Uptake by Estimation of Stem Taper Equation for Pinus densiflora in Korea. Journal of Climate Change Research 8(4): 415-424. [Korean Lierature] https://doi.org/10.15531/ksccr.2017.8.4.415
  10. Ko CU, Yim JS, Kim DG, Kang JT. 2021. Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources. Korean Journal of Remote Sensing 37(2): 245-256. [Korean Lierature]
  11. Korea Environment Institute. 2020. Korea Environment Institute Focus 8(15): 1-23. [Korean Lierature]
  12. Korea Forest Research Institute. 2012. Carbon Keeper Urban Forests. Seoul. Korea. p. 163. [Korean Lierature]
  13. Korea Forest Service. 2013. Operating standard for social contribution type forest carbon offset. Daejeon. Korea. [Korean Lierature]
  14. Korea Forest Service. 2020. The Story of Sejong National Arboretum Construction. Sejong. Korea, p. 291. [Korean Lierature]
  15. Korea Forest Service. 2022. 'Forest Renaissance' promotion strategy. Daejeon. Korea, p. 31. [Korean Lierature]
  16. Korea Forest Service. 2022. Statical yearbook of foresty. Daejeon. Korea, pp. 80-86. [Korean Lierature]
  17. Lee MK, Lee HI, Lee CB. 2022. Aboveground biomass and the drivers depending on the strata of urban forests. Journal of the Korean Data & Information Science Society 33(4): 677-690. [Korean Lierature] https://doi.org/10.7465/jkdi.2022.33.4.677
  18. Lukas H, Wolfgang O, Hermann E, Christiane B. 2017. UNFCCC before and after Paris - what's necessary for an effective climate regime. Climate Policy 17(2): 150-170. https://doi.org/10.1080/14693062.2015.1115231
  19. Maltamo M, Naesset E, Vauhkonen J. 2014. Forestry applications of airborne laser scanning, concepts and case studies, Dordrecht, NL. p. 333.
  20. Park EJ, Kang KY. 2010. Estimation of C Storage and Annual CO2 Uptake by Street Trees in Gyeonggi-do. Korean Journal of Environment and Ecology 24(5): 591-600.
  21. Sa YJ. Woo HS, Kim JS. 2022. Investigation of Korean forest carbon offset program: Current status and cognition of program participants. Journal of Korean Society of Forest Science 111(1): 165-176. [Korean Lierature]