DOI QR코드

DOI QR Code

Application and Comparative Analysis of River Discharge Estimation Methods Using Surface Velocity

표면유속을 이용한 하천 유량산정방법의 적용 및 비교 분석

  • Jae Hyun, Song (Planning & Management Division, Korea Institute of Hydrological Survey) ;
  • Seok Geun Park (Department of Civil Engineering, Inha University) ;
  • Chi Young Kim (R&D Division, Korea Institute of Hydrological Survey) ;
  • Hung Soo Kim (Department of Civil Engineering, Inha University)
  • 송재현 (한국수자원조사기술원 기획경영본부) ;
  • 박석근 (인하대학교 토목공학과) ;
  • 김치영 (한국수자원조사기술원 연구개발실) ;
  • 김형수 (인하대학교 사회인프라공학과)
  • Received : 2023.05.28
  • Accepted : 2023.06.07
  • Published : 2023.06.30

Abstract

There are some difficulties such as safety problem and need of manpower in measuring discharge by submerging the instruments because of many floating debris and very fast flow in the river during the flood season. As an alternative, microwave water surface current meters have been increasingly used these days, which are easy to measure the discharge in the field without contacting the water surface directly. But it is also hard to apply the method in the sudden and rapidly changing field conditions. Therefore, the estimation of the discharge using the surface velocity in flood conditions requires a theoretical and economical approach. In this study, the measurements from microwave water surface current meter and rating curve were collected and then analyzed by the discharge estimation method using the surface velocity. Generally, the measured and converted discharge are analyzed to be similar in all methods at a hydraulic radius of 3 m or over or a mean velocity of 2 ㎧ or more. Besides, the study computed the discharge by the index velocity method and the velocity profile method with the maximum surface velocity in the section where the maximum velocity occurs at the high water level range of the rating curve among the target locations. As a result, the mean relative error with the converted discharge was within 10%. That is, in flood season, the discharge estimation method using one maximum surface velocity measurement, index velocity method, and velocity profile method can be applied to develop high-level extrapolation, therefore, it is judged that the reliability for the range of extrapolation estimation could be improved. Therefore, the discharge estimation method using the surface velocity is expected to become a fast and efficient discharge measurement method during the flood season.

홍수 유량측정은 직접 하천에 접촉하는 방식의 경우 측정인력의 안전 문제와 다수의 인력이 필요한 점 등 어려운 점이 많다. 최근 이러한 문제점을 해결하기 위해 현장에서 측정이 간편하고, 수면에 접촉하지 않는 비접촉방식의 전자파표면유속계 활용이 증가하고 있으나 돌발적이고 급변하는 현장 여건의 적용에 있어 어려움이 있다. 따라서, 홍수 상황에서 표면유속을 이용한 유량산정방법은 이론적이고, 경제적인 접근이 필요하다. 본 연구에서는 전자파표면유속계 측정자료와 수위-유량관계곡선식 자료를 수집하여 표면유속을 이용한 지표유속법과 유속분포법을 적용 및 분석하였다. 전반적으로 동수반경 3 m 이상 또는 평균유속 2 ㎧ 이상에서는 모든 방법이 측정유량 및 환산유량과 유사한 결과로 분석되었다. 그리고 대상지점 중 수위-유량관계곡선식 고수위 범위에서 최대유속 발생 위치 구간의 최대 표면유속을 이용하여 지표유속법과 유속분포법으로 유량을 산정하였고, 환산유량과의 평균 상대오차가 모두 10% 이내로 비교적 일치하였다. 홍수시 한 개의 최대 표면유속 측정과 지표유속법 및 유속분포법을 이용한 유량산정방법은 고수위 외삽 개발에 적용할 경우 외삽추정 구간에 대한 신뢰도를 제고할 수 있을 것으로 판단되었다. 따라서, 본 연구결과를 토대로 한 표면유속을 이용한 유량산정방법은 신속하고 효율적인 홍수 유량측정 방안이 될 것으로 기대된다.

Keywords

References

  1. Cha, Jun-Ho. (2015). Development and Application of Velocity Profile Method with Poisson Equation. Ph.D. Dissertation. Department of Civil and Environmental Engineering, Graduate School of Hanyang University. 
  2. Chiu, C.-L. (1988). Entropy and 2-D Velocity Distribution in Open Channels. Journal of Hydraulic Engineering. 114(7): 738-758.  https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(738)
  3. Chiu, C.-L. and D. W. Murray. (1992). Variation of Velocity Distribution along Nonuniform Open-Channel Flow. Journal of Hydraulic Engineering. 118(7): 989-1001.  https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(989)
  4. Chiu, C.-L. and G.-F. Lin. (1983). Computation of 3-D Flow and Shear in Open Channels. Journal of Hydraulic Engineering. 109(11): 1424-1440.  https://doi.org/10.1061/(ASCE)0733-9429(1983)109:11(1424)
  5. Chiu, C.-L. and J.-D. Chiou (1986). Structure of 3-D Flow in Rectangular Open Channels. Journal of Hydraulic Engineering. 112(11): 1050-1068.  https://doi.org/10.1061/(ASCE)0733-9429(1986)112:11(1050)
  6. International Organization for Standardization. (2021). Hydrometry - Measurement of Liquid Flow in Open Channels - Velocity Area Methods Using Point Velocity Measurements. International Standard ISO 748. Geneva: ISO. 
  7. Kim, Chang Wan, Min Ho Lee, Dong Hoon Yoo, and Sung Won Jung. (2008). Discharge Computation in Natural Rivers Using Chiu's Velocity Distribution and Estimation of Maximum Velocity. Journal of Korea Water Resources Association. 41(6): 575-585.  https://doi.org/10.3741/JKWRA.2008.41.6.575
  8. Kim, Chi Young. (2010). Development of Velocity Profile Method for Streamflow Estimation and Its Applicability. Ph.D. Dissertation. Department of Civil Engineering, Inha University Graduate School. 
  9. Kim, Dong-Su, Sung-Kee Yang, Soo-Jeong Kim, and Jun-ho Lee. (2015). Enhancement Technique of Discharge Measurement Accuracy Using Kalesto Based on Index Velocity Method in Mountain Stream, Jeju Island. Journal of Environmental Science International. 24(4): 371-381.  https://doi.org/10.5322/JESI.2015.24.4.371
  10. Lee, Sin Jae, Hong Yoon Choi, and Dae Young Lee. (2018). Discharge Estimation Using Surface Velocity and Index Velocity Method. Proceedings of the Korea Water Resources Association Conference. 273. 
  11. Ministry of Environment. (2019-2020). Hydrological Survey Report. Sejong: ME. 
  12. Ministry of Land, Infrastructure and Transport. (2016-2018). Hydrological Survey Report. Sejong: MOLIT. 
  13. Morlock, S. E., H. T. Nguyen, and J. H. Ross. (2002). Feasibility of Acoustic Doppler Velocity Meters for the Production of Discharge Records from U.S. Geological Survey Streamflow-Gaging Stations. U.S. Geological Survey Water-Resources Investigations Report 01-4157: 56. 
  14. Morse, B., M. Richard, K. Hamai, D. Godin, Y. Choquette, and G. Pelletier. (2010). Gauging Rivers during All Seasons Using the Q2D Velocity Index Method. Journal of Hydraulic Engineering. 136(4): 195-203.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000143
  15. Rantz, S. E. and others. (1982a). Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge. U.S. Geological Survey Water Supply Paper 2175: 1-284. 
  16. Rantz, S. E. and others. (1982b). Measurement and Computation of Streamflow: Volume 2. Computation of Discharge. U.S. Geological Survey Water Supply Paper 2175: 285-631. 
  17. Roh, Youngsin, Sin Jae Lee, and Dae Young Kim. (2020). An Study on Flow Discharge Calculation Using Surface Velocity. Proceedings of the Korea Water Resources Association Conference. 230. 
  18. Sloat, J. V. and W. S. Gain. (1995). Application of Acoustic Velocity Meters for Gaging Discharge of Three Low-Velocity Tidal Streams in the St. Johns River Basin, Northeast Florida. U.S. Geological Survey Water-Resources Investigations Report 95-4230: 26. 
  19. Song, Jae Hyun, Moon Hyung Park, Jun-Ho Cha, and Chi Young Kim. (2019). Applicability Evaluation of Velocity Profile Method by V-ADCP Measuring Real-Time River Water Use. Journal of Korea Water Resources Association. 52(1): 83-96.  https://doi.org/10.3741/JKWRA.2019.52.1.83